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Music content has recently been identi¯ed as useful information to promote the performance of

music recommendations. Existing studies usually feed low-level audio features, such as the Mel-

frequency cepstral coe±cients, into deep learning models for music recommendations. However,
such features cannot well characterize music audios, which often contain multiple sound sources.

In this paper, we propose to model and fuse chord, melody, and rhythm features to meaningfully

characterize the music so as to improve the music recommendation. Specially, we use two user-
basedattentionmechanisms to di®erentiate the importance of di®erentparts of audio features and

chord features. In addition, a Long Short-Term Memory layer is used to capture the sequence

characteristics. Those features are fused by a multilayer perceptron and then used to make

recommendations. We conducted experiments with a subset of the last.fm-1b dataset. The ex-
perimental results show that our proposal outperforms the best baseline by 3:52% on HR@10.

Keywords: Recommendation system; music information retrieval; chord; attention.

1. Introduction

With the rapid development of music streaming services, music recommendation has

become an increasingly important topic, attracting the attention of both academia
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and industry [1, 2]. Music content has been identi¯ed as useful information to pro-

mote the performance of music recommendations. Oord et al. use Convolutional

Neural Network (CNN) to learn the mapping of audio content to the music vectors

and then introduce these vectors into the music recommendation task [3, 4]. Some

e®orts have been made to hybridize the user's listening history with the audio con-

tent to generate recommendations. Lee et al. propose a user embedding approach

that integrates user history records and CNN-based audio content with Neural

Collaborative Filtering (NCF) [5] and generates recommendations end-to-end [6].

Given the success of audio features in tasks such as speech recognition, frequency

domain features, such as Mel-frequency cepstral coe±cients or spectrograms, are

used to represent audio features in hybrid music recommendation algorithms [7].

However, although these low-level audio features are suitable for certain tasks, their

discriminative power and semantics are limited [8, 9]. This makes them not fully

suitable for music classi¯cation, musical emotion recognition, or music recommen-

dation tasks, requiring a more meaningful representation of music [10]. Our previous

study has disclosed that users tend to have di®erent degrees of preference for

di®erent segments of music content, termed ¯ne-grained music preferences [8].

However, existing embedding methods for music content do not distinguish between

di®erent parts of the music at a ¯ne-grained level. Instead, they use CNN or Re-

current Neural Networks (RNN) to directly learn the mapping between the audio

content and the embedding vector. Such coarse-grained embedding methods may

trap existing methods into sub-optimal solutions.

We argue that users' ¯ne-grained preferences on music content should be carefully

mined through chord features. As a high-level music feature, a chord progression is a

continuous sequence of chords (e.g. C-G-Am-F) that describes the structure of music,

which is the de¯ning feature on which melody and rhythm are built. To this end, we

have proposed COAT in our previous work [9], which uses a user-based attention

mechanism to learn users' ¯ne-grained music preferences for di®erent parts of the

music and then has achieved better performance than the low-level audio feature.

However, this work ignores the sequence characteristics in chords and does not use

the audio features. There are great di®erences in the chord sequences of di®erent

styles of music. For example, the chord sequences of pop music usually contain fewer

chords and have more repetitions between paragraphs, while the chord sequences of

jazz usually contain more chords and little repetition between paragraphs.

In this paper, we extend our previous work [9] by fusing audio and chord features

(FAC) to improve the music recommendation. Speci¯cally, FAC uses a Generalized

Matrix Factorization (GMF) layer to mimic matrix factorization and mine users'

musical interests from their interaction with songs. In addition, FAC has two feature

extractors to extract audio features and chord features, respectively. Audio features

include some low-level time-domain-based or frequency-domain-based character-

istics, which are helpful for music recommendations. To users' ¯ne-grained music

preferences for di®erent parts of audio features, we use a user-based attention

mechanism to deal with the ¯ne-grained music preferences of users for music content

1754 W. Feng et al.
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in the audio feature extractor. At the same time, the sequence characteristic in°ects

the trend of chord change in songs, so we use Long short-term memory (LSTM) to

capture the sequence characteristics. Thus, there is not only a user-based attention

mechanism but also LSTM in the chord feature extractor. Finally, a multi-layer

perceptron (MLP) is used to fuse those feature vectors obtained from the two

extractors and GMF and then make predictions. The main contributions of this

paper are summarized as follows:

. We propose a recommendation model to fuse audio features and chord features.

Based on these features, FAC can make better performance than only using chord

features.

. We propose a chord feature extractor that models sequence characteristics and the

relationship between user preference and chord features, both of which are

essential for music recommendation.

. We propose an audio feature extractor that uses a user-based attention layer to

learn the ¯ne-grained music preferences of users for music content.

. We conducted experiments with a subset of the last.fm-1b dataset to assess the

performance of our proposal. The experimental results show that our approach

outperforms the baseline methods.

2. Related Work

In this section, we summarize the related music recommendation, attention, and

pairwise-based methods, which are the basis of our method.

2.1. Music recommendation algorithm

Deep learning-based music recommendation approaches usually obtain a vector

representation of a song from its audio content or metadata, known as an embedding

vector. The obtained embedding vectors are then used to perform content-based

recommendations, integrate into matrix factorization methods, or build hybrid

music recommendation systems [7].

Oord et al. introduce deep learning techniques to music recommendation systems

[3]. After obtaining the embedding vectors of users and songs by implementing a

matrix factorization method, they train CNN to learn the mapping between the

audio features and they embedding vector. This allows newly generated music to

obtain its embedding vector via this CNN without interaction with the users. Beyond

the audio content, scholars try to integrate information in more modalities. Yi et al.

propose a cross-modal variable auto-encoder for content-based micro-video back-

ground music recommendations that integrates video content and audio content to

form recommendations [11].

Since separating the process of acquiring music embedding vectors from acquiring

user and song embedding vectors may produce sub-optimal solutions, some scholars

FAC: A Music Recommendation Model Based on Fusing Audio and Chord Features (115) 1755
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consider an end-to-end manner to build hybrid recommendation systems [6]. Liang

et al. suggest a hybrid approach that ¯rst learns the content features through a

multi-layer neural network and subsequently integrates them into the matrix fac-

torization as a prior [12]. Lee et al. suggest a deep content-user embedding model,

which learns users' and songs' embeddings through a multi-layer neural network

while using CNN to learn audio features of songs, and combines the two in an end-to-

end way to ¯nally generate recommendations [6]. Feng et al. propose a hybrid music

recommendation algorithm that combines user behavior and audio features to learn

the ¯ne-grained preferences of users for music content from multiple audio features

by using an attention mechanism [8]. Valerio et al. use a hypergraph to model the

relationship between users, songs, and tags, which is more likely to provide useful

suggestions because that can understand the nucleus of the relationship between

users and musics [2]. Yezi Zhang uses CNN to process spectrum and notes in musics

[4]. The recommendation results are based on the similarity between customer

preferences and the two musical features.

To sum up, much work has been done on integrating audio content into collab-

orative ¯ltering recommender systems. However, these approaches have not yet

explored the e®ects of higher-order music features with more explicit meanings in

music recommendation tasks, nor have they been able to mine the ¯ne-grained

preferences of users for music content. The development of music information re-

trieval techniques and the application of attention mechanisms in recommender

systems make it possible to ¯ll this gap.

2.2. Attention-based recommendation and data mining system

The human attention mechanism inspires the attention mechanism in deep learning.

Like the attention to a speci¯c part of the input in human vision, applying the

attention mechanism in recommender systems allows the model to ¯lter the most

informative part from the input features. Therefore reducing the in°uence of

noisy data improves the e®ectiveness of the recommendation and brings some

interpretability [13, 14].

Wang et al. propose a dynamic user modeling approach that introduces the

attention mechanism into the collaborative ¯ltering method [15]. The method ac-

curately portrays user interests by combining temporal information from calculating

the degree of in°uence of the K items that the user has recently interacted with. The

incorporation of the attention mechanism enhances the e®ectiveness of the collab-

orative ¯ltering method. Zhou et al. propose a framework based on self-attention for

modeling user behavior. The introduced self-attention mechanism demonstrates

better performance and e±ciency in their experiments than CNN and RNN [16].

Du et al. introduce a user embedding-based attention mechanism in a sarcasm

detection task, which allows the features of various aspects of the user to be used

e®ectively [17]. For the next point-of-interest recommendation task, Liu et al.

propose an attention-based category-aware GRU (ATCA-GRU) model [18].

1756 W. Feng et al.
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The ATCA-GRU model can select the more signi¯cant parts of the relevant his-

torical check-in trajectory to enhance the recommendation e®ect using the attention

mechanism.

Gong et al. introduce an attention mechanism on the massive open online courses

recommendation task [19]. They fuse meta-paths with contextual information by

applying the attention mechanism on meta-paths of heterogeneous graphs to capture

di®erent students' di®erent interests. Shi et al. propose a method based on meta-

paths and the attention mechanism [20]. The attention mechanism di®erentiates

the importance of di®erent meta-paths, which improves the e®ectiveness of recom-

mendations and brings some interpretability.

In summary, attention mechanisms have been widely used with good results in

various data mining tasks, which allows us to apply them to the analysis of users'

¯ne-grained music preferences.

2.3. Pairwise-based recommendation methods

General recommendation methods use a pointwise loss function, the MSE loss

function, as their objective function. There is another loss function, the pairwise loss

function, which is di®erent from the pointwise loss function. Compared with the

pointwise method that learns true labels, the pairwise method is designed to capture

the existence of partial order among items in the original data. Bayesian personalized

ranking (BPR) is a typical pairwise method and learns the global ranking of items

from their local ranking relationships [21].

Some e®orts have been made to apply pairwise loss functions to the content-based

recommendation. For visual personalized ranking, VBPR [22] uses the pairwise loss

function as its objective function to distinguish the important item embedding that is

a high-level representation of visual features and extracted by CNN. The partial

order information in pairwise loss functions can also be used to model the geo-

graphical neighbors by nearby centers, which can help point-of-interest recommen-

dations [23]. Recently, the pairwise loss function has experimental improvement in

training graph convolutional networks [24, 25].

3. Method

The architecture of our proposed FAC is shown in Fig. 1. FAC takes the one-hot

vector of users and songs and the corresponding audio ¯le of the song as input, and

the output is the probability that the user listens to the song. FAC uses GMF to

embed users and songs and learns the history of user-song interactions. Above this,

we design two extractors to extract chord features and audio features, respectively.

After obtaining the vectors representing the user's long-term interests and the vec-

tors representing the music content, we use a stacked neural network (called a

prediction layer) to learn the complex relationship between user behavior records

and music content and thus generate recommendations.

FAC: A Music Recommendation Model Based on Fusing Audio and Chord Features (115) 1757
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3.1. Generalized matrix factorization layer

The user's interaction history is the most important representation of the user's

interests, and mining the user's interest preferences can help improve the recom-

mendation e®ect. Matrix factorization is a representative technique for this task, and

being able to mimic this technique in a recommendation model is the foundation for

building a successful recommendation model [5].

For this, we use a generalized matrix factorization layer (GMF) to mimic the

matrix factorization. This layer ¯rst receives one-hot vector representations of the

user and the song, denoted by V U
u and V I

i . After the embedding operation is

implemented, these high-dimensional one-hot vectors are mapped to lower-dimen-

sional vectors, called user and song embedding vectors. In the work of He et al. [5],

after obtaining the embedding vectors for the user and the song, the probability of

the user clicking on the song is obtained directly from the inner vector product. Here,

we keep these two vectors and input them into the next part of the model. The

function is as follows:

GMFout ¼ W T
u V

U
u �W T

i V
I
i ; ð1Þ

whereWu andWi are the learnable parameters that map V U
u and V I

i into embedding

vectors, and � denotes the element-wise product of vectors.

Fig. 1. The overall framework of our proposed FAC model.

1758 W. Feng et al.
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3.2. Chord Feature Extractor

There are three layers in chord feature extractor, i.e. chord embedding layer, LSTM

layer and chord attention layer.

3.2.1. Chord Embedding

The chord feature extraction takes chord features from audio ¯les. At this layer, we

use a chord-extractor toola to extract the chords of the music. As the number of

chords is often inconsistent from song to song, and neural networks cannot handle

variable-length data, we uniformly padded the collected chord sequences to 100 by

repeating them in order.

After obtaining the chord sequence, we generate a random embedding vector

representation for each chord. Each chord sequence can be represented by a matrix

C, and Ci represents the ith chord vector in the chord matrix. The value of i indi-

cates the order in which the chord appears in the time dimension.

3.2.2. LSTM for sequence characteristics

A chord, in music, is any harmonic set of pitches/frequencies consisting of multiple

notes (also called "pitches") that are heard as if sounding simultaneously. Combi-

nations of di®erent chords also produce di®erent e®ects. The sequence characteristic

in°ects the trend of chord change in songs and is very attractive to users. There are

great di®erences in the chord sequences of di®erent styles of music. Some special

chord combinations always attract people's attention. Therefore, modeling sequence

features can e®ectively improve the model performance. To capture the combined

features between chords, we use LSTM which is a typical RNN and is usually used to

model the sequence data such as sentences. The sequence characteristics learned by

LSTM is

Chordsc ¼ LSTMðCÞ: ð2Þ

3.2.3. Chord attention layer

LSTM can learn the sequence features of chords, but it lacks modeling of the user's

personalized interest in chord features. Here we use a user-based attention layer to

capture users' interests in chord features. And since di®erent placements of the same

chords produce di®erent sounds (e.g. Am-F-C-G and C-G-Am-F are di®erent chord

progressions), we generate positional embedding for each position, representing as pi.

Combining the user embedding vector eu and the position vector pi, we calculate

the attention weight ai of each chord embedding vector using the following equation:

ai ¼ hTRelu WT

eu
Ci

pi

2
4

3
5þ b

0
@

1
A; ð3Þ

ahttps://ohollo.github.io/chord-extractor/.
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where h, W and b are parameters, and Relu is the Relu activation function.

After applying Eq. (3) to calculate the individual attention weights ai, we nor-

malized them using softmax with the following equation:

�i ¼
exp aið ÞP jCj
j¼1 exp aj

� � : ð4Þ

The normalized attention weights �i represent the importance of the di®erent parts

of the song, with which we ¯nally weighted and summed with the chord embedding

vector to obtain the output of the chord attention layer Chordfg. The user prefer-

ence-based music content can be embedded as

Chordfg ¼
XjCj

i¼1

�i � Ci: ð5Þ

3.3. Audio feature extractor

Existing embedding methods directly learn the mapping between the audio content

and the embedding vector [3, 6]. Such coarse-grained embedding methods do not

distinguish between di®erent parts of the music at a ¯ne-grained level that lead to a

sub-optimal solution. Audio content directly re°ects the content of music, so

establishing a relationship between users and audio content will help achieve accu-

rate music recommendations. Attention mechanism achieves excellent performance

in some tasks [26]. Similar to the chord attention layer, the audio feature extraction

uses a user-based attention layer to embed audio features. We denote the audio

features of a song i as Di, so that the representation of the embed result is

Audiofg ¼
XjDj

j

�j �Dj; ð6Þ

where
P jDj

j is a user-based attention score and is as follows:

�j ¼
W T

u V
U
u �DjP jDj

j W T
u V

U
u �Dj

: ð7Þ

3.4. Prediction layer

After obtaining user embedding and music content embedding from GMF and two

feature extractors, we calculate the ¯nal listening probability using a stacked neural

network with the following equation:

ŷui ¼ MLP

GMFout

Audiofg
Chordfg
Chordsc

2
6664

3
7775

0
BBB@

1
CCCA; ð8Þ
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where MLP stands for the common multi-layer perceptron, whose number of layers

and shapes can be set °exibly. In this paper, we set its number of layers to 3 to avoid

too many parameters causing over¯tting. In terms of shape, we set it using a typical

tower structure, where each layer has twice the number of neurons as the next layer.

The premise of this approach is that setting smaller neurons in the higher-level neural

network will enable more abstract information to be learned from the data [27].

3.5. Objective function and optimal

After feeding the model with information on chord sequences and audio features to

represent the content of the music, the preference relationship between the user and

the song becomes complex. Therefore, the model needs to have a stronger ¯tting

capability to ¯t this kind of preference relationship. A pairwise loss function that has

been identi¯ed that can e®ectively distinguish the importance of di®erent features is

used as FAC's objective [21, 25]. A pair of items i>uj indicates that a user u prefers

item i to item j. For one user, given a positive sample item i and a negative sample

item j, the predicted score of item i should be higher than that of item j [21]. The

objective function is de¯ned as follows:

Lpair ¼ max
X

u;i;j2D
�ji >u jð Þ

¼ max
X

u;i;j2D
ln� p̂ui � p̂uj

� �� ��jj�jj2;
ð9Þ

where � is the sigmoid function �ðxÞ ¼ 1=ð1þ expð�xÞÞ, p̂ui is the predicted score of

user u on item i from a model, and �� is the hyperparameter of the regularization.

The item j is sampled uniformly randomly.

4. Experiment Settings

In this section, we introduce the dataset used in the experiments. We then pose ¯ve

research questions that we intend to answer in this paper to justify the proposed

approach's e®ectiveness. Based on these questions, we design experiments and report

their results.

4.1. Dataset descriptions and constructions

The experiments require a dataset containing the user's listening history and the

song's audio ¯le. For user listening history, we extracted a subset from the widely

used last.fm-1b dataset [28]. As the dataset does not contain audio ¯les of the songs,

we downloaded the corresponding audio ¯les from streaming platforms based on the

collection of songs in the subset to form the dataset used in this paper.

Due to the size of the complete last.fm-1b dataset, conducting experiments on the

complete data set would consume too much time. So we streamlined the last.fm-1b
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dataset in the following steps: First, we used 2014 as the boundary to remove pre-

vious records from the complete dataset; Second, we ¯ltered the top 10,000 popular

songs from the song set to build a new subset; Finally, based on this subset, we

removed listening records that were not relevant to it. We removed users with less

than ten interaction records to ensure the dataset's quality. With 30,753 users,

10,000 songs and 1,533,245 interaction records, our dataset has a data sparsity of

99.50%.

4.2. Research questions

. RQ1: Whether the proposed method is better than traditional methods?

. RQ2: How does each extractor designed in FAC a®ect the results?

. RQ3: How many are the best negative sampling ratio for pairwise loss function?

. RQ4: Does attention is better than CNN to capture audio features?

. RQ5: How to fuse the chord features and audio features?

4.3. Experiment design

To address the above research questions, we design four experiments accordingly.

. Experiment 1:We use a comparative experiment to verify whether our proposed

model can obtain better results than the baseline approach. The chosen baseline

methods include a traditional matrix factorization algorithm, a neural network-

based collaborative ¯ltering algorithm, and hybrid music recommendation algo-

rithms based on audio features or chord features.

. Experiment 2: To validate the e®ectiveness of two extractors, we conducted

ablation experiments on FAC. We designed variants of the model with and

without the designs and judged the e®ectiveness by comparing the performance of

the recommendations.

. Experiment 3: FAC is trained by a pairwise loss function, which is in°uenced by

its sampling ratio. Training data is construed by a user, a positive item, and a

negative item. That a negative item is sampled from the items that the user does not

interact with. We do an experiment to ¯nd the best ratio in the range from 1 to 10.

. Experiment 4: Previous works [3, 4, 6, 11] use CNN to deal with audio features.

CNN has no interaction with users so it cannot in°ect users' interest in audio

features. This experiment gives evidence about the importance of modeling ¯ne-

grain features.

. Experiment 5: There are several fusion methods, like concat, mean, max. This

experiment shows the best way to fuse the features that FAC learns.

4.3.1. Parameter settings.

The models involved in this paper use the same strategy for parameter settings. The

range of searching for each hyperparameter is as follows: batch size is

1762 W. Feng et al.
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[128,256,512,1024], learning rate is [0.0001, 0.0005, 0.001, 0.005] and embedding size

is [8,16,32,64].

For the NeuMF method, the size of the predictive factor is the output dimension

of the MLP and GMF layers in the method. For FAC, the size of the predictive factor

is equal to the dimensions of the embedding vectors. For WMF, the number of

predictive factors is equal to the embedding size. And for the LSTM-based approach

and CNN-based approach, we use the Librosa [29] library to extract the MFCCs

features from the audio to represent music content.

4.3.2. Evaluation Protocols.

We used a strategy called leave-one-out to test the model's e®ectiveness, which has

also been widely adopted in other work [30]. Regarding this strategy, the test set

consists of one positive sample and several negative samples, where the positive

sample is the last song in the user's listening record. Given a user, it would be time-

consuming that regard all non-interacted songs as negative samples and sort them.

Thus, we only sample 99 songs that a user has not interacted with as negative

samples. This is a common strategy [31]. We use two common evaluation metrics to

measure the e®ectiveness of ranking, Hit Ratio (HR) and Normalized Discounted

Cumulative Gain (NDCG) [32]. The HR metric is given a 1 or 0 depending on

whether the positive sample appears in the ¯nal top-n list. NDCG gives ¯ner scores

to positive samples based on where they appear in the top-n list. Higher scores are

given to positive samples that appear higher. We generate top-n recommendation

lists for all users for each experiment round and use this to calculate two metrics, HR

and NDCG. The average of all users' scores on both metrics is used as the ¯nal score

of the model.

5. Results and Discussions

This section reports experimental results that demonstrate the e®ectiveness of the

proposed method.

5.1. Performance comparison (RQ1)

In this experiment, we selected a traditional matrix factorization approach, a deep

learning-based collaborative ¯ltering approach, and a hybrid audio content approach

as baselines for comparison with FAC model.

. BPRMF [21]: Bayesian personalized ranking matrix factorization is the ¯rst

method that proposes the pairwise loss function for recommendation methods.

. WMF [33]: The method uses a weighted matrix factorization technique to obtain

the embedding vector of users and items and produces recommendations from the

inner vector product.
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. NeuMF [5]: The method uses deep neural networks to implement collaborative

¯ltering and is the basis for many neural network-based recommendation

algorithms.

. NeuMF with CNN: On top of NeuMF, CNN is used to process MFCCs features

as a way to compare the performance of our proposed chord attention layer with

that of the CNN-based approach.

. NeuMF with LSTM: On top of NeuMF, LSTM is used to process MFCCs

features as a way to compare the performance of our proposed chord attention

layer with that of the RNN-based approach.

. HRMA [8]: HRMA is a hybrid method that uses an attention mechanism to

model audio features, and uses a GMF layer and an MLP layer to model latent

features.

. COAT [9]: COAT uses attention to model the ¯ne-grained chord features and

NeuMF to make recommendation.

Figures 2 and 3 show that the FAC model consistently achieves better results

than the other methods on the two evaluation metrics. When embedding size is 64,

FAC outperforms the best baseline COAT by 3:52% on HR@10. FAC improves

performance because it models the sequence characteristics by an LSTM and audio

features by a user-based attention mechanism. NeuMF performs slightly better than

the COAT model when the predictive factor size is 8, because COAT is in°uenced by

the noise from the music content when the embedding dimension is small. This

¯nding suggests that mining users' behavioral history is crucial in designing rec-

ommendation algorithms. When the size of the neural network model is small, too

much introduction may introduce more noise into the model and degrade the rec-

ommendation performance.

Compared with NeuMF, the LSTM-based approach can obtain some improve-

ment, while the CNN-based approach will obtain more inferior results. This phe-

nomenon indicates that audio features in matrix form, though similar to pictures,

Fig. 2. HR@10 performance comparison of di®erent methods.
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have more signi¯cant temporal features than local features. And because low-level

audio features are complex, it is challenging to process them properly in music

recommendation models.

As shown in Figs. 2 and 3, the gap between the FAC model and other methods

becomes larger as the predictive factor increases. In our analysis, the input chord

sequence information makes the preference relationship between the user and the

song more complicated, which means that the recommendation model needs to have

stronger ¯tting power to learn this preference relationship. As the predictors in-

crease, the model's width increases, making the model a stronger ¯tting capability.

This phenomenon demonstrates again that when applying deep learning techniques

to recommender systems, the use of larger-scale models brings improved recom-

mendation results.

5.2. Ablation experiment (RQ2)

FAC uses LSTM and attention mechanism to get sequence characteristics, and audio

features, respectively. We conduct ablation experiments to verify the e®ect of dif-

ferent modules on the ¯nal result. The �Ca denotes that a model without the at-

tention layer in a chord extractor, and �A denotes that a model without an audio

extractor.

Tables 1 and 2 show the results of the ablation experiments related to the at-

tention mechanism proposed in this paper. As can be seen from the tables, FAC fuses

Fig. 3. NDCG@10 performance comparison of di®erent methods.

Table 1. Performance of various variants on HR@10.

Embedding size 8 16 32 64

COAT(-Ca) 0.392 0.491 0.556 0.608

COAT 0.581 0.629 0.647 0.653
FAC(-Ca-A) 0.502 0.594 0.641 0.662

FAC(-Ca) 0.514 0.590 0.638 0.665

FAC 0.611 0.646 0.663 0.676

FAC: A Music Recommendation Model Based on Fusing Audio and Chord Features (115) 1765
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audio and chord features and achieves the best results. FAC(-Ca) is better than FAC

(-Ca-A), indicating that audio features still have some potential features that FAC

does not learn from chords. The results of either variant are not as good as FAC,

indicating that music recommendation is a multi-feature fusion process. Incorpo-

rating more features can e®ectively improve the recommendation results.

5.3. Best negative sampling ratio (RQ3)

The negative sampling ratio is set from 1 to 10, in°uencing FAC by the pairwise loss

function. The pairwise loss function maximizes the scores di®erent between positive

items and negative items. A big ratio will produce huge information about users'

interests, i.e. users like some songs and dislike some songs. However, it could also

make a mistake, i.e. it regards the positive one in test data as a negative one.

Moreover, another potential shortcoming is that it conducts ine®ective learning with

a signi¯cant training time cost. So this experiment helps us to ¯nd the balance

between time cost and model performance.

The experiment result is shown in Fig. 4. From it, we can see that the model

performance ¯rst increases and then decreases as the sampling rate increases. The

best HR@10 is achieved at the negative sampling rate is 6, and the best NDCG@10 is

achieved at 4 and 6. At this point, the model can obtain the most useful information

from the negative sampling method. As the sampling rate increase, the performance

degrades. On the one hand, the model has a greater probability of treating the

samples in the test set as negative samples, resulting in poor results. On the other

hand, as the sampling rate increases, the model is more susceptible to the in°uence of

Table 2. Performance of various variants on NDCG@10.

Embedding size 8 16 32 64

COAT(-Ca) 0.205 0.281 0.319 0.355

COAT 0.344 0.390 0.421 0.442

FAC(-Ca-A) 0.283 0.353 0.393 0.422
FAC(-Ca) 0.287 0.354 0.397 0.428

FAC 0.363 0.397 0.425 0.444

Fig. 4. The performance on di®erent negative sampling ratio.
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the data distribution [34, 35]. The model achieves the best performance when the

negative sampling rate is 4.

5.4. Attenion VS CNN (RQ4)

To model user interest in audio features, FAC uses an attention mechanism. This

experiment shows the importance of modeling ¯ne-grain features from audio fea-

tures. We compare the CNN-based FAC (FAC(C)) and attention-based FAC (FAC

(A)) by di®erent embedding sizes 8; 16; 32; 64. The results are shown in Fig. 5.

FAC(A) outperforms FAC(C) under di®erent embedding sizes. Music is essen-

tially a complex audio signal. However, the creators are not too concerned with the

performance of frequency characteristics. The creator triggers the creation of music

from a global perspective. There is more of a global relationship between the audio

features of music. The attention mechanism can learn the global dependencies be-

tween features, achieving better performance than CNN, which focuses only on local

features. It can positively impact the e®ectiveness of recommendations that atten-

tion mechanisms are used to distinguish the importance of di®erent parts from

multimedia content in deep learning-based recommendation algorithms.

5.5. Fusion Function Comparison (RQ5)

To ¯nd the best way to fuse the features that FAC learns, we compare some fusion

methods, including concat, mean, and max. The experiment result is shown in

Table 3. The performance with

di®erent fusion functions.

HR@10 NDCG@10

Concat 0.676 0.444

Mean 0.674 0.433

Max 0.577 0.359

(a) HR@10 performance on
di®erent embedding size

(b) NDCG@10 performance on
di®erent embedding size

Fig. 5. FAC performance comparison for processing audio features based on CNN and Attention.
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Table 3. The concat function achieves the best performance than other functions as it

can distinguish the importance of di®erent features by taking advantage of nonlinear

functions. The max function emphasizes the most numerically signi¯cant features,

not the most important ones, so its results are not good as others.

6. Conclusions and Future Work

In this paper, we propose fusing higher-order music features and lower-order fre-

quency domain features to represent music content in the music recommendation

model and di®erentiate the importance of music content properly. To this end, we

propose a music recommendation model known as FAC. It uses two attention

mechanisms to model chord features and audio features. In addition, LSTM is used

to capture the sequence characteristics in chord features. The experimental results

demonstrate the e®ectiveness of the method proposed in this paper. Also, the at-

tention mechanism is better than CNN for capturing high-level features in audio.

FAC only uses audio features and chord features to make recommendations.

There are still many higher-order music features, such as melody, rhythm, and lyrics,

can be used to improve the model performance. At the same time, some deep learning

models focus on enhancing the quality of interactions among multimodal embedding

vectors, while FAC connects several feature embeddings simply. Thus, we will in-

troduce more higher-order music features and design a feature interaction method to

improve recommendation performance in the future.
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