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A B S T R A C T

Recommendation methods improve rating prediction performance by learning selection bias
phenomenon-users tend to rate items they like. These methods model selection bias by
calculating the propensities of ratings, but inaccurate propensity could introduce more noise, fail
to model selection bias, and reduce prediction performance. We argue that learning interaction
features can effectively model selection bias and improve model performance, as interaction
features explain the reason of the trend. Reviews can be used to model interaction features
because they have a strong intrinsic correlation with user interests and item interactions. In
this study, we propose a preference- and bias-oriented fusion learning model (PBFL) that models
the interaction features based on reviews and user preferences to make rating predictions. Our
proposal both embeds traditional user preferences in reviews, interactions, and ratings and
considers word distribution bias and review quoting to model interaction features. Six real-
world datasets are used to demonstrate effectiveness and performance. PBFL achieves an average
improvement of 4.46% in root-mean-square error (RMSE) and 3.86% in mean absolute error
(MAE) over the best baseline.

. Introduction

Recommender systems have increasing importance in human life. Selection bias exists in most recommendation data because
ating data are often missing not at random (MNAR) [1]. For example, users usually rate and comment on movies that they like
nd rarely rate movies that they do not like [2]. Modeling selection bias can effectively improve recommendation performance [3].

To improve rating prediction performance, some methods are proposed to model selection bias. IPS [1] is a principled method that
eal with selection biases. It learns unbiased propensities to determine the effect of the prediction error of observed data on the loss
unction. DR-JL [4] model integrates the imputed errors and propensities in a doubly robust way. MRDR [5] is a more robust doubly
obust method than DR-JL. MRDR uses two post-click conversion rate models to enhance the accuracy of error imputation. These
ethods consider the propensity, a probability of observed rating, and require relatively accurate click-through rate estimation.
owever, the propensity is not easy to calculate. Inaccurate propensity introduces more noise and fails to model selection bias,
ltimately leading to a reduction in prediction performance.

We consider selection bias as a part of the interaction features. Selection bias is the statistical result of interactions between users
nd items. It reflects the likelihood that a user is inclined to select an item. The interaction features reflect why the user interacts
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with the item through latent features. Therefore, modeling interaction features can inherently reflect and explain selection bias.
Thus, we model interaction features to model selection bias and improve model performance.

We argue that reviews can be used to learn the interaction features as they have a strong intrinsic correlation with user interests
nd item interactions, and many studies tend to improve the performance of review-based recommendations [6–8]. The real intent
an help recommender systems identify the interaction features of users and items to improve prediction performance. There are
wo features to help model interaction features by reviews. (1) Word distribution bias: a prior probability of word distribution that
s domain dependent [9,10]. It can provide prior knowledge at the word level to judge the likelihood of interaction between users
nd items, while words in reviews often include some aspect that users are usually interested in [11,12]. (2) Review quoting: users
ill refer to the opinions of others when users comment on items [6,13]. Review quoting indicates the user’s endorsement of an
pinion in a review. By learning semantic similarities in historical reviews, the likelihood of interactions between users and items
an be learned.

In this paper, we propose a preference- and bias-oriented fusion learning (PBFL) model to learn interaction features and three
ypes of user preferences to make rating predictions. Different from the IPS study on interaction probability, PBFL both models
raditional preference and interaction features. Specifically, PBFL has three components to model and fuse the preference and bias
rom reviews to ratings. First, a word-level convolutional attention network embeds each review. We use word-level user and item
mbeddings as part of the attention score to tackle word distribution bias. An attention mechanism in this network is used to adjust
he review embedding, the aggregation result of word embedding. Since the words in reviews are usually biased, the attention
echanism can fuse the word distribution bias and word-level preference. Then, a review-level user–item interaction learning
etwork models the selection bias and produces interaction feature vectors. We design a recurrent aggregated attention layer in
his network to tackle the review quoting. By looping through similar reviews, this layer can find citation relationships between
eviews. At the same time, we use interaction-level embeddings to implicitly learn the effect of the various external factors on user
nteraction behaviors. The interaction feature vectors fuse the review quoting features and interaction-level preference. Finally, a
ating prediction network makes predictions by using the interaction feature vectors and rating-level preference embeddings.

The contributions to the literature in this paper are as follows.

• We propose a preference- and bias-oriented fusion learning model to model the interaction features and a three-level user
preference to make rating predictions.

• We propose a recurrent aggregated attention layer that discovers citation relationships between reviews by calculating the
similarity between user reviews and item reviews.

• We perform several experiments on six real-world datasets, the results of which demonstrate that PBFL outperforms state-of-
the-art review-based and bias-based recommendation methods.

2. Related works

In this section, we discuss rating-based recommendation methods and review-based methods, and research two review features
hat are useful for modeling interaction features.

.1. Recommendation with rating

Rating prediction based on bias has a long history in recommendation systems since matrix factorization (MF) was proposed [14].
ating bias is a variation that is independent of any interactions [14,15]. The variation is due to effects associated with either users
r items. Individual level bias instability influences various online decisions [14,16]. Its prediction function has four terms: global
ean, item bias, user bias, and user–item interaction. Pham et al. [17] propose that ratings do not always represent user preferences.

nstead, they use features to determine the consistency of ratings and user preferences. Krishnan et al. [18] identify that the displayed
verage rating of an item has an important influence on user decisions.

Further research showed that selection bias, which is the embodiment of user choice and is from MNAR data, affects rating bias.
n MNAR data, the observed probability of each rating is not equal, and users tend to rate their favorite items. Rating bias reflects
ow biased a rating is, while selection bias reflects the possibility of rating bias. Thus, researchers focus on the selection bias. IPS [1]
s a principled method that learns unbiased propensities to determine the effect of the prediction error of the observed data on the
oss function. To model MNAR data, DR-JL [4] integrates the imputed errors and propensities in a doubly robust way. However,
R-JL could increase the variance of the IPS under inaccurate error imputation. This makes the learning process complicated and

eads to sub-optimal results. MRDR [5] is a more robust doubly robust method than DR-JL. It uses two post-click conversion rate
odels to enhance the accuracy of error imputation. Such methods rely on the success of the propensities estimator, but it is not

n easy approach by which to achieve the desired outcome since error propensities can also decrease the model performance.

.2. Recommendation with reviews

Analyzing reviews is an important way to ascertain the logic of user behavior. There are two types of developing preference-based
ecommender systems that combine ratings and reviews, as follows.

The first types focus on using natural language processing (NLP) models to extract accurate text features. CTR employs latent
2

irichlet allocation to learn the topics of texts [19]. CDL [20] uses a stacked denoising auto encoder to embed texts. The text features
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Fig. 1. Overall architecture of the proposed model.

are the item-side features used to calculate prediction ratings. However, these methods ignore the word-order information [8].
ConvMF [21] and DeepCoNN [22] use convolutional neural networks (CNN) to extract high-level text features to overcome the
above limitation. NARRE [6] uses attention to determine the influence of reviews in which user embedding is the aggregation
of the important reviews. EPR [13] notes that only several pieces will influence the potential users in decision-making among
numerous reviews. It divides the influence of a review into three-facet influences: general user influence, personalized user influence,
and review-related influence. TAERT [23] uses a temporal convolutional network to learn the sequential characteristics in reviews.
RGNN [12] builds a review graph for each user that nodes are words and edges are word orders. It uses a type-aware graph attention
network to summarize graph information and a personalized graph pooling to capture important words. These methods focus on
extracting text features but ignore learning interaction features based on text features [24].

The second type focuses on using an attention mechanism to learn preferences in interactions. The attention mechanism captures
the interaction between users and items, filters out less valuable reviews, and captures essential reviews. CARL [25] uses an attention
mechanism to encode context information for each user–item pair. D-attn [26] uses two attention mechanisms to learn the local and
global interaction features. DAML [7] uses mutual attention to model the relationship between users’ and items’ reviews. HTI [24]
transfers textual features between users and items. ARPM [27] learns user preferences about review aspects and sentiment analysis.
DRRNN [28] proposes that considering both rating and review for error backpropagation in the training stage can capture more
review information than other review-based methods. DSRNL [29] extracts dynamic user interests by stacking attention layers that
deal with sequence features. Similar to Transformers [30], DSRNL adds temporal dependencies on sequence features. However, these
methods focus on preferences and ignore the effect of bias [3,14,31].

3. Problem formalization

In a recommendation problem, assume that a user set  = {𝑢1, 𝑢2,… , 𝑢𝑚} and an item set  = {𝑖1, 𝑖2,… , 𝑖𝑛} contains 𝑚 users and 𝑛
items, respectively. 𝑟𝑢𝑖 denotes the true rating of user 𝑢 of item 𝑖, 𝑟̂𝑢𝑖 is the prediction from a model, and 𝑅 ∈ R𝑚∗𝑛 denotes the rating
matrix. For each user–item pair (𝑢𝑖, 𝑣𝑗 ), we denote 𝐷𝑢 = {𝑑𝑢,1, 𝑑𝑢,2,… , 𝑑𝑢,𝑧𝑢} as the set of user reviews, and 𝐷𝑖 = {𝑑𝑖,1, 𝑑𝑖,2,… , 𝑑𝑗,𝑧𝑖}
as the set of item reviews, where 𝑧𝑢 and 𝑧𝑖 denote the sizes of the sets 𝐷𝑢 and 𝐷𝑖 respectively. The model make an prediction using
(𝑢, 𝑖) and 𝐷𝑢, 𝐷𝑖.

4. Method

PBFL has three components, i,e., a word-level convolutional attention network, a review-level user–item interaction learning
network, and a rating prediction network. The architecture of PBFL is illustrated in Fig. 1. First, the word-level convolutional
attention network embeds each review. We track the word distribution bias through joint user and item preferences of words as
part of the attention score.

Review embedding is the fusion of the word distribution bias and word-level preference. Then, the review-level user–item
interaction learning network models the selection bias and produces interaction feature vectors. The interaction feature vector
is the fusion of the review quoting features and interaction-level preference. A recurrent aggregated attention layer calculates the
similarity between user reviews and item reviews to model the review quoting features. The interaction-level preference implicitly
learns the effect of various external factors on interaction behavior. Finally, the rating prediction network makes predictions by
using the interaction feature vectors and rating-level preference.
3
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Fig. 2. Word-level convolutional attention network.

Fig. 3. Recurrent aggregated attention layer.

4.1. Word-level convolutional attention network

We first embed each word and then use CNN to extract text features. Then, an attention mechanism is used to aggregate these
features. The process of this network is illustrated in Fig. 2. In the attention mechanism, we use user and item embedding as a part
of the attention score. Word distribution bias is a prior probability of word distribution that is domain dependent [10]. Existing
methods [7,8] use GloVe as the pre-trained word embedding model, which is trained on a large corpus. The word importance in
user reviews is different from that in the corpus because of the word distribution bias. The proposed can adjust the word importance
and fuse user preference and word distribution bias.

𝑑 = {𝑤𝑥}
𝑙
𝑥=1 denotes a review of length 𝑙 and {𝐰𝑥}

𝑙
𝑥=1 is the word embedding sequence in 𝑑. We then apply CNN to capture the

high-level word features 𝐜𝑥.
Attention. 𝐩𝑤𝑢 and 𝐩𝑤𝑖 denote word-level preference embeddings of user 𝑢 and item 𝑖, respectively, which are used to compute

the attention scores so that PBFL can fuse the word distribution bias and user preference. Word patterns in reviews do not always
consistently mirror user preferences and they may have some inherent subtle complexities. Thus, we use an MLP to fuse the word-
level preference embeddings and then obtain a joint preference vector at the word level. The final attention score is the inner product
of the joint preference vector and the word feature vector. Thus, the score is influenced by the semantics of the word and the joint
preference vector. Through the backpropagation algorithm, the MLP automatically adjusts the weights of the preference vectors to
adapt to the inherent complexity in reviews. Specifically, the review representation can be aggregated as the weighted sum over
the word vectors:

𝐝 =
𝑙

∑

𝑥=1
𝛼𝑥𝐜𝑥, (1)

𝛼𝑥 =
𝑒𝑥𝑝(𝛽𝑇 𝐜𝑥)

∑𝑙
𝑥=1 𝑒𝑥𝑝(𝛽𝑇 𝐜𝑥)

, (2)

𝛽 = 𝑓 𝑡𝑎𝑛ℎ
𝑀𝐿𝑃 1([𝐩

𝑤
𝑢 ∶ 𝐩𝑤𝑖 ]), (3)

where 𝑓 𝑡𝑎𝑛ℎ
𝑀𝐿𝑃 1 is a one-layer multi-layer perceptron (MLP) to fuse the word-level preference.

4.2. Review-level user–item interaction network

As shown in Fig. 3, a review-level user–item interaction network aggregates the review vectors and produces interaction
embedding vectors. First, a recurrent aggregated attention layer aggregates review vectors to represent users and items. Users will
refer to the opinions of others when users comment on items [13], so the aggregation representation includes the latent bias. At the
same time, reviews may be influenced by various external factors, which might result in discrepancies, reducing the effect of review
features. Thus, review-based representations can only represent a subset of features of users and items, as users may express their
opinions implicitly. If the interaction features are fully based on aggregating review vectors, they could miss important information
in interaction behaviors. Considering the various external factors, we utilize an embedding layer to learn the implicit user bias in
interaction behaviors and then design an interaction learning layer to fuse review features and the interaction embedding.
4
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4.2.1. Recurrent aggregated attention layer
The recurrent aggregated attention layer models the review relationship and produces review aggregated representations for

sers and items, respectively. In each loop, we compute the distance between user reviews and item reviews as attention scores
o adjust the representation of the reviews. Then, we aggregate the review representations into a vector by the attention scores.
his vector represents the user’s (item’s) review information. As a mutual learning mechanism, semantic information is aggregated

n similar reviews. Similar semantic information models that users will refer to the opinions of others when users comment on
tems [13].
Review distance. We use Euclidean distance to calculate the review distance and determine the likelihood of citations between

eviews [24]:

𝑒(𝜂)𝑘,𝑡 = |𝐝(𝜂−1)𝑢,𝑘 − 𝐝(𝜂−1)𝑖,𝑡 |,

𝑘 = 1,… , 𝑧𝑢;

𝑡 = 1,… , 𝑧𝑖;

𝜂 = 1,… ,𝐻,

(4)

here 𝑒𝑘,𝑡 is the Euclidean distance between the 𝑘th user review and 𝑡th item review. The initial representations 𝐝(0)𝑢,𝑘 and 𝐝(0)𝑖,𝑡 are
generated by the word-level convolutional attention network, as specified in the preceding Section 4.1. More discussion about review
distance can be found in Section 5.5.1.

Recurrent representation. We use 𝑎𝑘 to indicate the closest distance between the 𝑘th user review and all the item reviews. A
review with small 𝑎𝑘 is assigned a large attention score for representing the recurrent representation of user reviews:

𝑎(𝜂)𝑘 = 𝑚𝑖𝑛(𝑒(𝜂)𝑘,1, 𝑒
(𝜂)
𝑘,2,… , 𝑒(𝜂)𝑘,𝑛),

𝛿(𝜂)𝑢,𝑘 =
𝑒𝑥𝑝(−𝑎(𝜂)𝑘 )

∑𝑧𝑢
𝑘=1 𝑒𝑥𝑝(−𝑎

(𝜂)
𝑘 )

,

𝐭(𝜂)𝑖 =
𝑧𝑢
∑

𝑘=1
𝛿(𝜂)𝑢,𝑘𝐝

(𝜂−1)
𝑢,𝑘 ,

𝐝(𝜂)𝑢,𝑘 = 𝜆𝐝(𝜂−1)𝑢,𝑘 + (1 − 𝜆)𝐭(𝜂)𝑢 ,

𝐡(𝜂)𝑢 = 𝜆𝐡(𝜂−1)𝑢 + (1 − 𝜆)𝐭(𝜂)𝑢 ,

(5)

here 𝜆 is a hyper-parameter.
Similar to the recurrent representation of user reviews, the recurrent representation of item reviews is expressed as:

𝑏(𝜂)𝑡 = 𝑚𝑖𝑛(𝑒(𝜂)1,𝑡 , 𝑒
(𝜂)
2,𝑡 ,… , 𝑒(𝜂)𝑚,𝑡),

𝛿(𝜂)𝑖,𝑡 =
𝑒𝑥𝑝(−𝑏(𝜂)𝑡 )

∑𝑧𝑖
𝑡=1 𝑒𝑥𝑝(−𝑏

(𝜂)
𝑡 )

,

𝐭(𝜂)𝑖 =
𝑧𝑖
∑

𝑘=1
𝛿(𝜂)𝑖,𝑡 𝐝

(𝜂−1)
𝑖,𝑡 ,

𝐝(𝜂)𝑖,𝑡 = 𝜆𝐝(𝜂−1)𝑖,𝑡 + (1 − 𝜆)𝐭(𝜂)𝑖 ,

𝐡(𝜂)𝑖 = 𝜆𝐡(𝜂−1)𝑖 + (1 − 𝜆)𝐭(𝜂)𝑖 ,

(6)

where 𝑏𝑡 indicates the closest distance between the 𝑡th item review and user reviews.
The initial representations 𝐡1𝑢 = 𝐭(1)𝑢 and 𝐡1𝑖 = 𝐭(1)𝑖 . The recurrent representation of the item (i.e., 𝑖) reviews can be obtained by

following (5). Finally, we use 𝐻th representations for the output of the network, as follows:

𝐝𝑢 = 𝐡(𝐻)
𝑢 , 𝐝𝑖 = 𝐡(𝐻)

𝑖 . (7)

4.2.2. Interaction learning layer
The previous layer learns the review features of users and items, where the review features include the review quoting features.

However, user–item interactions are influenced by various factors, which are not fully reflected by reviews. If the interaction features
are fully based on aggregating review vectors, they could miss important information in interaction behaviors. Thus, the interaction
learning layer is designed to implicitly learn preferences that are missing from the reviews. Here, we add an interaction embedding
layer for users and items and denote the interaction preference embedding of 𝑢 and 𝑖 as 𝐩𝑐𝑢 and 𝐩𝑐𝑖 , respectively. We merge review
features and preference features and then input them to an MLP to obtain the final interaction features. Thus, the embedding layer
implicitly learns the effect of various factors on interactions beyond those contained in the reviews.

𝐞 = 𝑓𝑀𝐿𝑃 (𝐩𝑐𝑢,𝐝𝑢,𝐩
𝑐
𝑖 ,𝐝𝑖)

= 𝜙𝑒𝑙𝑢
𝑜𝑢𝑡( 𝜙

𝑒𝑙𝑢
𝑥 ( ... 𝜙𝑒𝑙𝑢

2 ( 𝜙𝑒𝑙𝑢
1 ([𝐩𝑐𝑢 ∶ 𝐝𝑢 ∶ 𝐩𝑐𝑖 ∶ 𝐝𝑖]) ) ... ) ),

(8)

where 𝜙𝑒𝑙𝑢
𝑜𝑢𝑡 and 𝜙𝑒𝑙𝑢

𝑥 denote the mapping function for the output layer and the 𝑥th neural network layer, respectively. The form of a
5

mapping layer is 𝜙(𝐲) = 𝑔(𝑊 ⋅𝐲+𝑏), where 𝑊 is the weights, 𝑏 is the bias term, and 𝑔 is an activate function. As user interaction data
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Table 1
Statistical results of six datasets, where 𝑧𝑢 and 𝑧𝑖 indicate the average number of reviews per user and item, respectively, and 𝑙 denotes the average number of
words per review.

Dataset No. of users No. of items No. of ratings 𝑧𝑢 𝑧𝑖 𝑙 Density

Musical instruments 1,429 900 10,261 10 17 59 0.798%
Office products 4905 2420 53,228 7 11 56 0.449%
Digital Music 5540 3568 64 666 11 18 112 0.327%
Grocery and gourmet food 14,681 8,713 151,254 10 22 89 0.118%
Video games 24,303 10,672 231,577 9 21 124 0.089%
Sports and outdoors 35,598 18,357 296,337 8 14 99 0.045%

are observational rather than experimental, bias is easily introduced into the data [32]. The bias term is used to fit the potential
bias. By interactively coupling review vectors and embeddings, a more suitable interaction feature vector can be obtained.

4.3. Prediction learning network

The superiority of deep-learning methods validates the advantage of nonlinear functions. NeuMF [33] is a neural network-based
xtension, which is expressed as follows:

𝑟̂𝑁𝑒𝑢𝑀𝐹 = 𝑀𝐿𝑃 (𝑝𝑢, 𝑞𝑖). (9)

ased on NeuMF, the prediction function of PBFL is expressed as

𝑟̂𝑃𝐵𝐹𝐿 = 𝑀𝐿𝑃 (𝐞,𝐩𝑟𝑢,𝐩
𝑟
𝑖 )

= 𝜙𝑒𝑙𝑢
𝑜𝑢𝑡( 𝜙

𝑒𝑙𝑢
𝑥 ( ... 𝜙𝑒𝑙𝑢

2 ( 𝜙𝑒𝑙𝑢
1 ([𝐞 ∶ 𝐩𝑟𝑢 ∶ 𝐩𝑟𝑖 ]) ) ... ) ),

(10)

here 𝐩𝑟𝑢 and 𝐩𝑟𝑖 denote rating-level preference embeddings of 𝑢𝑖 and 𝑣𝑗 , respectively. We use the 𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒 function to fuse these
actors.

.4. Time complexity analysis

In the word-level convolutional attention network, the time complexity is 𝑂(𝑑 ∗ |𝐶𝑁𝑁| ∗ (𝑧𝑢 + 𝑧𝑖)), where 𝑑 is the embedding
imension, |𝐶𝑁𝑁| is the time complexity of the CNN, and 𝑧𝑢 and 𝑧𝑖 denote the number of reviews of 𝑢 and 𝑖, respectively. In the
eview-level user–item interaction network, the time complexity is 𝑂((𝑧𝑢 ∗ 𝑧𝑖 ∗ 𝑑)𝐻 + 𝑑|𝑀𝐿𝑃 |), where |𝑀𝐿𝑃 | denotes the number of
he MLP. In the prediction learning network, the time complexity is 𝑂(𝑑|𝑀𝐿𝑃 |). In summary, the total time complexity of PBFL is
(𝑑 ∗ |𝐶𝑁𝑁| ∗ (𝑧𝑢 + 𝑧𝑖) + (𝑧𝑢 ∗ 𝑧𝑖 ∗ 𝑑)𝐻 + 𝑑|𝑀𝐿𝑃 |), and it is related to the dimension and review number. Although the above time
omplexity is complex, many of these terms are computed in parallel in deep-learning models, such as CNN and MLP.

. Experiments

We conducted experiments to show the effectiveness of the proposed model. First, we illustrate the details of datasets, baselines,
nd experimental settings. We then compare our methods with baselines, and finally, identify the effects of several designs on PBFL.

.1. Datasets

Experiments were conducted on six publicly available Amazon 5-core datasets1 to validate the effectiveness of the proposed
odel: Music Instruments (MI), Office Products (OP), Digital Music (DM), Grocery and Gourmet Food (GGF), Video Games (VG), and

ports and Outdoors (SO). The datasets are sourced from various domains, and as a result, users within each dataset exhibit distinct
ehavioral patterns. We first processed all words into the lower cases, filtered out non-alphabetic characters by a regularization
unction and stop words by NLTK tools [24,25]. The vocabulary of FBFL has 20,000 words that occur frequently in reviews. Finally,
e zero-padded reviews with zero if needed [6], and reviews were removed in the test set. The statistics of all datasets are presented

n Table 1.

.2. Baselines

We compared PBFL with the following state-of-the-art models and divided the baselines into three classes. The first class only
ses rating features, and includes PMF [34], NeuMF [33], IPS [1], DR-JL [4], and MRDR [5]. PMF is a probabilistic method
ased on MF while NeuMF is a neural network method based on MF. The last two classes use both reviews and ratings and are
iscussed in Section 2. The second class focuses on improving the accuracy of review features, and includes CDL [20], ConvMF [21],
eepCoNN(DCN) [22], ERP [13], TAERT [23], and RGNN [12]. The third class models the interaction between users and items,
nd includes D-attn [26], CARL [25], NARRE [6], DAML [7], HTI [24] and DSRNL [29].

1 http://jmcauley.ucsd.edu/data/amazon/
6
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Table 2
RMSE and MAE on six datasets. Best and second-best results are emboldened and underlined, respectively.

MI OP DM GGF VG SO

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

rating

PMF 1.352 1.137 1.430 1.265 1.063 0.805 1.572 1.397 1.606 1.395 1.376 1.203
NeuMF 0.904 0.720 0.921 0.730 0.999 0.766 1.197 0.943 1.103 0.870 0.979 0.752
IPS 0.937 0.667 0.871 0.666 0.953 0.733 1.027 0.802 1.136 0.893 0.954 0.742
DR-JL 0.942 0.667 0.858 0.642 0.929 0.706 1.010 0.778 1.108 0.871 0.942 0.727
MRDR 0.964 0.682 0.903 0.664 0.966 0.698 1.061 0.779 1.097 0.832 0.923 0.673

review

CDL 1.080 0.834 1.223 1.062 1.039 0.783 1.190 0.967 1.165 0.902 1.089 0.852
ConvMF 1.026 0.786 0.952 0.728 0.940 0.673 1.092 0.863 1.145 0.899 1.013 0.824
DCN 1.003 0.759 0.901 0.711 0.894 0.662 1.036 0.802 1.168 0.875 0.885 0.719
NARRE 0.922 0.695 0.867 0.681 0.889 0.673 0.963 0.747 1.039 0.799 0.882 0.690
ERP 0.914 0.643 0.920 0.725 1.115 0.864 1.074 0.835 1.195 0.938 0.976 0.680
TAERT 0.695 0.601 1.059 0.604 0.885 0.663 0.931 0.692 0.990 0.687 0.834 0.594
RGNN 0.859 0.605 0.860 0.623 0.905 0.655 0.999 0.710 1.046 0.766 0.936 0.646

interaction

D-attn 0.956 0.742 0.923 0.716 1.277 0.810 1.070 0.824 1.062 0.842 0.997 0.784
CARL 0.878 0.677 0.834 0.647 0.948 0.743 0.961 0.753 1.029 0.798 0.888 0.686
DAML 0.848 0.651 0.811 0.612 0.913 0.664 0.938 0.735 1.045 0.788 0.883 0.667
HTI 0.813 0.611 0.731 0.552 1.034 0.666 0.877 0.672 0.966 0.731 0.826 0.629
DSRNL 1.036 0.620 0.890 0.621 0.879 0.672 0.952 0.721 0.983 0.754 0.900 0.651
PBFL 0.654 0.595 0.672 0.525 0.855 0.653 0.841 0.631 0.926 0.646 0.810 0.563

5.3. Experimental setup

We used GloVe-100 [35] to initialize the word embedding. Following existing work [24], the kernel sizes of the two CNNs are 3
nd 5, and the prediction network has 3 layers that combines four embeddings to make prediction. Each dimension of the prediction

network reduces one embedding size and is 300, 200, 100, respectively. The dropout rate is 0.5 and the batch size 128. We used the
dam optimizer with an initial learning rate of 0.0001.

Each experiment is repeated five times, and the results reported are the average of the five runs. In each training process, each
ataset was uniformly randomly shuffled and divided into three parts, i.e., a training set (first 80%), validation set (middle 10%),
nd test set (last 10%). The validation set is used to tune hyperparameters. The performance on the test set was evaluated by
oot-mean-square error (RMSE) and mean absolute error (MAE):

𝑅𝑀𝑆𝐸 =
√

1
|𝐷𝑠|

∑

𝑢,𝑖,𝑟𝑖𝑗∈𝐷𝑠

(

𝑟𝑖𝑗 − 𝑟̂𝑖𝑗
)2, (11)

𝑀𝐴𝐸 = 1
|𝐷𝑠|

∑

𝑢,𝑖,𝑟𝑖𝑗∈𝐷𝑠
|𝑟𝑖𝑗 − 𝑟̂𝑖𝑗 |. (12)

5.4. Performance comparison

Table 2 lists the performance results for all baselines. Bold type highlights the best results and underlines the second-best results.
The proposed method, i.e., PBFL, outperforms the baselines on all six datasets. On average, PBFL improves RMSE by 4.46% and
MAE 3.86% compared to the best baseline. These results indicate that the proposed method is effective for rating prediction on
datasets with different characteristics. Moreover, the significant performance gap between PBFL and the best baseline validates that
fusing learning with preference and bias captures more user behaviors by learning the correlation between reviews and ratings.

Some methods only use ratings. PMF is a basic method and is easily affected by bias. NeuMF outperforms PMF by a margin on
all the datasets, demonstrating the effectiveness of multilayer nonlinear transformations for capturing complex user–item relations.
Compared to PMF and NeuMF, IPS, DR-JL, and MRDR consider the propensity, a probability of observed ratings, achieving
significant performance improvement. These methods have better performance than other rating-based methods and some review-
based methods. They effectively improve model preference by modeling selection bias via calculating the propensity. However,
the performance of MRDR is not better than DR-JL on MI and OP datasets. MRDR aims to reduce the variance of DR loss to
enhance model robustness, but it may still have poor generalization when the bias is large. IPS, DR-JL, and MRDR only consider
the impact of selection bias in ratings. On the one hand, the propensity of ratings is not easy to calculate. Inaccurate propensity
could introduce more noise, reducing the prediction performance; on the other hand, selection bias is one type of interaction feature,
while improving model performance should consider more types. Compared to these methods, PBFL introduces an interaction feature
vector, which learns user–item interaction from reviews, and reduces the impact of the rating-level preference vectors, while these
methods re-weight the vectors by considering the propensity.

Some methods use reviews to enhance the performance of rating predictions. CDL is a basic review-based method that uses LDA
to learn latent representations of items from reviews. However, LDA is a word-bag method, ignoring the word-order information.
Compared to CDL, ConvMF uses CNN to extract high-level features for items and achieves better performance than CDL. Since CDL
7

and ConvMF both use MF to make predictions, the performance improvement can be attributed to CNN. The difference between
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Table 3
RMSE on six datasets with different review distances.

MI OP DM GGF VG SO

COS 0.635 0.848 0.894 0.970 0.858 0.820
KL 0.708 0.677 0.915 0.941 1.014 0.889
ED 0.654 0.672 0.855 0.841 0.926 0.810

Table 4
MAE on six datasets with different review distances.

MI OP DM GGF VG SO

COS 0.580 0.618 0.655 0.711 0.789 0.660
KL 0.596 0.622 0.651 0.721 0.780 0.640
ED 0.595 0.525 0.653 0.631 0.646 0.563

ConvMF and DCN is that DCN uses CNN to learn representations for users, while ConvMF uses latent vectors. CNN efficiently captures
the local semantics of different levels of granularities. Most importantly, CNNs have become the usual method of processing text.
Based on DCN, NARRE distinguishes the importance of reviews, further improving the performance. TAERT introduces a temporal
convolutional network (TCN) to capture the sequence characteristics. It achieves the second-best performance in several datasets
because TCN involves neighbor feature interactions, global feature interactions, and sequential characteristics in user embeddings.

Interaction-based methods learn interaction features based on reviews and are mostly better than other methods. We can observe
hat the improvements gained by CARL are consistent and stable. On average, the relative improvement of CARL against NARRE
s 4.55%. In the learning process of interaction features, CARL introduces preference embeddings to justify the weights of reviews.
he comparison between HTI and previous models, such as DAML, demonstrates the effectiveness of the hierarchical architecture,
hat formally divides the review-based recommendation process into three stages. Insufficient review and interaction data could
ave hindered the ability of DSRNL to learn accurate user and item representations. Compared to these methods, PBFL adopts the
hree-stage architecture and uses three individual embedding layers to learn latent preferences. At the same time, we design the
ecurrent aggregated attention layer, which models the review quoting and improves the accuracy of interaction features, thereby
mproving model performance.

.5. Analysis of PBFL model

We conducted a series of experiments to verify the designs proposed in this paper. First, we verified the effect of the recurrent
ggregated attention layer, which models review quoting, by determining the impact of the review distance measure and the depth
f this layer. Second, we verified the several preference embeddings used in different networks. Finally, we analyzed the real-time
omplexity of the proposed model.

.5.1. Impact of different measures of reviews distance
In the recurrent aggregated attention layer, we calculate the review distance, which is used to identify the importance of each

eview for a user. In this experiment, we want to find the optimal one from three common distance measures, i.e., cosine similarity,
ullback–Leibler divergence, and Euclidean distance. Cosine similarity (COS) measures the similarity between two vectors and
aps it into [−1, 1]. It is measured by the cosine of the angle between two vectors. Thus, it can avoid the effect of the length

f vectors. Kullback–Leibler divergence (KL) is the number of bits required to convert one distribution into another. The label of
rigin review is missed, so we calculate the KL for two sides of each review pair (for example, 𝐾𝐿(𝐴 ∥ 𝐵) and 𝐾𝐿(𝐵 ∥ 𝐴)). It makes
he distance directional and allows the user and item sides to have different distances for a review pair. In this paper, we use a
ord-embedding method GloVe to embed words. The geometrical properties of word embeddings are designed to capture semantic
nd syntactic relationships between words. Therefore, using this representation allows for interesting mathematical operations,
uch as measuring the similarity between two words by calculating the difference between their vectors. Euclidean distance (ED) is
uitable for measuring the similarity of continuous features, so we measure the effect of ED.

Experiment result is shown in Tables 3 and 4. From the result, we can see that ED method achieves the best performance in
ost datasets. PBFL embeds words with GloVe model, extracts high-level features with CNNs, and fuses these features to represent

eviews via vectors. The GloVe model uses vectors to represent words, which leads to the Euclidean distance between two vectors
aving special means, such as ‘‘King - Man = Queen - Women’’. Through CNNs and the fusion process, the review vectors keep the
emantic features. Compared with COS and KLD, ED emphasizes the impact of varied continuous dimensions on outcomes, helping
odels distinguish between non-irrelevant reviews. COS distance ignores the length of vectors, which leads it to be inaccurate.
lthough KL is bidirectional, it cannot help recommender systems determine which review is the origin review. An original review
oes not always have a small KL distance than other reviews.
8
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Fig. 4. Performance with respect to different depths of recurrent attention network.

Fig. 5. Impact of preference embedding at difference levels across datasets.

5.5.2. Impact of recurrent aggregated attention layer
Fig. 4 shows the performance comparison with recurrent aggregated attention layer depth ranging from 1 to 7. It can be seen

from the figure that the effect of recurrent aggregated attention layer depth on RMSE and MAE is different, as follows.

• RMSE is more sensitive to changes in depth, and the effect of depth varies across datasets. The model performances of the
6 datasets exhibit 2 types of distributions. In DM, GGF, and SO datasets, the PBFL achieves the best RMSE when the depth
of the recurrent attention network is set to 3. Conversely, in MI, OP, and VG datasets, a higher depth value leads to better
performance for PBLF. For the first type, the three datasets belong to the personal life domain and have a big average number
of words per review. Users in this domain tend to express their personalized viewpoints, relying less on references from other
reviews. In the second type, the three datasets belong to the special domains. MI and OP datasets have a small average number
of words per review. For the VG dataset, users are usually more active than in other fields, and they are more likely to express
their feelings about a game. In this type, users engage in deeper communications and carefully consider other users’ opinions.
For example, if a user wants to buy a musical instrument, they are likely to listen to other users’ opinions and carefully decide.

• The effect of depth on MAE is small. In most cases, setting the depth of the network at 4 achieved the best performance.

As the network depth increases, the performance first becomes better and then worse. The best result is achieved for a depth of
approximately 3 and, in some cases, 6. This shows that the recurrent attention network can indeed capture the situation in which
users refer to other people’s reviews when they themselves write a review. As such, there is a specific correlation between different
reviews.

5.5.3. Impact of preference embedding at difference levels
We analyzed the effect of the preference embedding at different levels, for which PBFL(-R) denotes that we removed the

rating preference embedding and PBFL(-RC) that we removed the rating and interaction preference embedding. Fig. 5 shows the
performance results. On most datasets, PBFL exhibited the best performance, demonstrating that PBFL’s fusion of different levels’
preference embeddings can effectively improve the model preference. On the MI dataset, PBFL(-R) performed better than PBFL.
Reviews and rating behaviors were more consistent on the musical instruments dataset. After adding the rating preference vector,
the convergence ability of the model was reduced. Overall, PBFL uses multiple embeddings to achieve better results than single
embedding.

5.5.4. Ablation study
We conducted an ablation experiment to study the contributions of different networks in PBFL more accurately. By removing

the networks in PBFL, this experiment identifies their contributions. In this subsection, we use the first letter of each network to
9
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Table 5
The experiment results of ablation study.

MI OP DM GGF VG SO

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

PBFL(-WR) 0.929 0.621 0.860 0.618 0.904 0.650 1.028 0.719 1.053 0.779 0.935 0.652
PBFL(-W) 0.751 0.624 0.834 0.619 0.858 0.648 0.987 0.708 1.047 0.790 0.830 0.658
PBFL(-R) 0.853 0.594 0.868 0.619 0.916 0.643 0.974 0.713 1.009 0.779 0.881 0.649
PBFL(avg) 0.888 0.596 0.836 0.621 0.916 0.649 0.940 0.714 1.027 0.781 0.905 0.644
PBFL 0.654 0.595 0.672 0.525 0.855 0.653 0.841 0.631 0.926 0.646 0.810 0.563

Fig. 6. Time cost on datasets of different scales.

represent that network. Thus, 𝑊 denotes the word-level convolutional attention network, 𝑅 denotes the review-level user–item
interaction network, and 𝑃 denotes the prediction learning network. PBFL(-WR) denotes that we only use the prediction learning
network to make predictions; PBFL(-W) denotes that we remove the word-level convolutional attention network in PBFL; PBFL(-R)
denotes that we remove the review-level user-item interaction network; and PBFL(avg) denotes that we use an average function
instead of the recurrent aggregated attention layer.

The experiment results are shown in Table 5. We regard PBFL(-WR) as the basic to analyze in those variants. Compared to
PBFL(-WR), PBFL(-W) has the review-level user–item interaction network to learn latent interaction features, making it significantly
outperforms better than PBFL(-WR). As the network utilizes interaction-level embeddings to model user behaviors, the above results
indicate that the review-level user–item interaction network implicitly learns user–item interaction features. Considering the results
of PBFL(-R) and PBFL, we find that reviews offer special information, but if we fully base on reviews to model the user–item
interaction features without the review-level user–item interaction network, the model performs not well. The review-level user–item
interaction network accurately aggregates the review vectors and latent representations to produce interaction embedding vectors.
The recurrent aggregated attention layer has a big effect on PBFL. When we remove it, the performance of PBFL significantly reduces,
as shown by PBFL(avg). Users sometimes refer to other users’ reviews, and are affected by these reviews. PBFL more accurately
aggregates reviews to represent users and items through the recurrent aggregated attention layer, and then learns interaction features
based on these aggregations. In a word, PBFL outperforms all variants better.

5.5.5. Time complexity analysis
To study the time efficiency of the proposed model, we compare its running time with two representative baselines. We compared

the training cost with the HTI and TAERT models, which were trained with an NVIDIA GeForce RTX 3090 graphics card with 24 GB
memory. The training time is the per epoch cost, and the prediction time is the time required to complete the prediction for the
entire testing set. The experimental results are shown in Fig. 6. Compared with TAERT, PBFL achieved a significant performance
improvement with little time cost. PBFL incurs slightly higher overhead than HTI, mainly due to a novel recurrent aggregated
attention layer. Since this layer undergoes multiple iterative processes, PBFL exhibits a higher time complexity than HTI. As the size
of the dataset increases, the time complexity exhibits a linear growth with a slight increment. The time complexity of the recurrent
aggregated attention layer is 𝑂((𝑧𝑢 ∗ 𝑧𝑖 ∗ 𝑑)𝐻 ). It depends on its depth 𝐻 and the number of reviews related to users and items. For
scenarios with high time requirements, the value of 𝐻 can be reduced, and appropriate filtering of user and item reviews can be
conducted to reduce the number of reviews involved in the calculation.

5.6. Visualization

We further investigated whether PBFL can capture important features at different levels of hierarchies, and visualized the
attention scores both at the word and review levels. In addition, we randomly sample one rating record.

Fig. 7 shows the visualization result of four review-level attention scores. The main features of games under review include plot,
gameplay, sound, price, and multiplayer model. We highlighted sentences with such features using different colors. Based on the
10
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Fig. 7. Review level visualization. Four reviews were analyzed in the rating record (3475, 9267, 5) to obtain review-level attention scores. Several key sentences
are marked in color. The main features of games include plot, gameplay, sound, multiplayer model, and price, denoted with red, yellow, cyan, purple, and green,
respectively.

Fig. 8. Word level visualization. Two reviews were analyzed in the record (3475, 9267, 5). The attention scores are divided into three types: high scores are
marked with a large font size and red color, middle scores with a medium font size and orange color, and small scores with a small font size and black color.

visualization, we can see that the review-level recurrent aggregated attention layer tends to give high scores for informative and
useful reviews. The content between these reviews is not intersecting. Specifically, review1 is awarded the highest score because
it contains four game features. Review2 is mainly concerned with price. Compared with other games, low-priced and well-made
games can give players a better gaming experience and psychological satisfaction. Review3 discussed the plot and the multiplayer
model. Review4 is general praise of the naughty dog without any actual content, so it is awarded the lowest score. Through multiple
loop computations, the review-level recurrent aggregated attention layer generally learns review quoting and generalizes specific
semantic information. Attention scores also illustrate the importance of semantics.

In word-level visualization (Fig. 8), the informative words have high attention scores. For example, the words ‘‘combat’’, ‘‘tlou’’,
‘‘black Friday’’, ‘‘cheap’’ and ‘‘shooter’’ are assigned larger attention scores than others. These words strongly indicate users’ interest.
The proposed method can learn some keywords from the biased review text to characterize users.

Overall, this study shows that the proposed method can capture different review features, and those features describe why a user
chose a specific item. By capturing those features, PBFL learns an interaction feature to improve the recommendation performance.

5.7. Discussion

This paper proposes a PBFL model that uses reviews to learn the interaction features. Based on reviews, PBFL models the effect
of word distribution bias and review quoting in the process of review-based recommendation. In this section, we discuss some
important assumptions and experimental phenomenons.

First, PBFL partly relies on the assumption that reviews have a strong and consistent intrinsic correlation with user interests
and item interactions. However, it is worth mentioning that reviews can be influenced by various external factors. Thus, overfitting
reviews are not always suitable. For example, Noemi et al. mention that good reviews might fail to get feedback from readers that
could depend on factors such as age (recentness) and level of visibility on the websites [36]. Although extracting user preference
from reviews improves model performance, recommendation methods should carefully identify the helpfulness of reviews. To avoid
overfitting reviews, PBFL introduces an interaction-level embedding layer to extract latent interaction behaviors. The unconstrained
embedding vector layer cannot guarantee the optimal solution. Therefore, researchers can explore more specific external factors
and design corresponding constraint methods to optimize the embedding layer.
11
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Second, PBFL models the word distribution bias by introducing user and item embeddings to justify the weights of words.
he weights are used to identify the importance of words in aggregating words to represent reviews. Although users have their
references, such as writing style, in reviews, some subtle complexities are still ignored. Except for some common aspects like price
nd size, a specific field may have some proper nouns. Reviews may also contain sarcasm, leading to inconsistent semantic content
nd ratings. These phenomena require more complex analysis and corresponding designs.

Third, PBFL improves model performance with more model complexity than before. That increases the time complexity. This
henomenon does not only exist in PBFL but also in most review-based methods. Although the model’s time cost can be addressed
y increasing computing power, optimizing the model’s time cost is still a practical requirement for recommendation algorithms.
ome works provide that every sufficiently overparameterized (dense) neural network contains a subnetwork that, even without
raining, achieves accuracy comparable to that of the trained large network [37,38]. PBFL adopts several dense layers and CNNs
hat can be pruned to reduce the time cost.

. Conclusions

In this study, we propose a PBFL method, which uses reviews to learn the interaction features and model selection bias. To
ackle word distribution bias, we use word-level embeddings of users and items as a part of the attention score in an attention
echanism. The attention mechanism adjusts the importance of words and aggregates words to represent reviews. We then design
recurrent aggregated attention layer in this network to tackle the review quoting. By looping through similar reviews, this layer

an find citation relationships between reviews. Based on the citation relationships, we aggregate reviews to represent users and
tems. The interaction feature is the fusion of the review-based representations and latent interaction-level embeddings. PBFL uses
LP to make predictions from the interaction feature and rating-level embeddings. The experimental results demonstrate that PBFL

erforms significantly better than other state-of-the-art models. In addition, we validate the effectiveness of several designs and
reference embeddings.

PBFL ignores some phenomena, such as the effect of external factors on reviews and interaction behaviors. In future work, we
ill explore more specific external factors and design corresponding constraint methods to optimize the embedding layer in PBFL.
t the same time, the experiment identifies that the time complexity of PBFL has linearly increased with the increasing data scale,
hich affects the scalability of PBFL in larger datasets. We plan to explore a pruning method that reduces the time cost of PBFL.
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