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Bayesian personalized ranking (BPR) has been proposed as an effective method to model pairwise
learning, and it is widely used in many personalized recommender systems. However, the effectiveness
of BPR can be seriously affected by an imbalanced data distribution because it tends to rank popular
items ahead of personalized items. As a result, the personalized needs of users cannot be well met.
In this paper, we propose a novel personalized recommendation method called similarity pairwise
ranking (SPR) to rank users’ favorite items first. SPR eliminates the differences in the scores between
popular and personalized items based on their similarity by using a new penalty. In such a way, the
SPR-enhanced recommendation will render meaningful and personalized results that better meet the
individual needs of users, and it overcomes the negative impact of imbalanced datasets. We design a
model to illustrate the improvement of SPR: similarity pairwise ranking matrix factorization (SPRMF).
Experimental results obtained using six datasets indicate the superiority in recommendation quality
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of SPRMF over the recent state-of-the-art methods.
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1. Introduction

The rapid creation and dissemination of information continu-
ously exacerbates the problem of information explosion. Recom-
mender systems have been widely used in various areas as an
effective means to tackle this problem. At the same time, recom-
mender systems are also the primary tool to meet the individual
needs of users. As an example, the majority of viewing hours on
Netflix are generated through the videos that are recommended
by recommender systems [1], Some e-commerce websites use a
recommender system to increase the conversion rates of users
by studying users’ online shopping behaviors [2-4]. Meanwhile,
there is a system that is designed to help scholars find suitable
papers [5].

Among recommendation strategies, collaborative filtering al-
gorithms use the wisdom and behavior of the public to achieve
good performance, and thus they have attracted the attention
of many researchers [6,7]. Bayesian personalized ranking (BPR)
is one such collaborative filtering method, and it is seminal in
modeling pairwise learning from the Bayesian perspective [8].
BPR tries to learn from the local ranking relationships to the
global ranking of items. Unlike the pointwise method, which
maintains consistency with the original information, the pairwise
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method is designed to capture the existence of partial order
among items in the original data. BPR for learning has been
recently applied to point-of-interest recommendation [9], visual
personalized ranking [10], and graph convolutional networks for
collaborative filtering [11,12].

However, datasets derived from the real world are often im-
balanced. It has been pointed out that the effectiveness of BPR
can be seriously affected by an imbalanced data distribution
[13-15]. BPR conducts ineffective learning in training because
popular items have more increments than personalized items.
It tends to rank popular items ahead of personalized items, and
as a result, the personalized needs of users cannot be well met.
Many studies have attempted to overcome this problem. The
previous pairwise methods can be divided into three categories.
First, group-based methods [7,16] solve the problem by intro-
ducing group preferences. The source of a group preference is
uncertain, and these methods do not punish the scores of popular
items. Second, the absolute rating is used to learn the relative
relations and absolute information at the same time [17,18].
However, it is inappropriate to use negative samples to represent
the missing information in recommender systems [19]. Third,
there are also some methods that sample the original dataset into
a uniform dataset, but this approach also loses the information on
popularity [15,20,21].

The present paper proposes a personalized recommendation
method called similarity pairwise ranking (SPR) to overcome the
aforementioned problem and rank the users’ favorite items first.
SPR eliminates the differences in the scores between popular
and personalized items based on their similarity by using a new
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penalty. As a fundamental feature of items, the item similarity is
used in many recommender systems [22]. The KNN method uses
historical records to calculate the similarities between items [6].
At the same time, graph regularization and homophily regulariza-
tion are added to constrain the representations of items [23,24].
Content-based methods also generate recommendation lists by
capturing the similarities in the content [25]. The top-ranked
items and the items that interact with a user have higher scores
in terms of content similarity. Item similarity exists in a wide
range of items, including both popular items and personalized
items. Additionally, different users can have different views. The
same ratings of items illustrate the similarity between different
items, i.e., items that satisfy the taste of users are similar to a
certain degree. SPR emphasizes the similarity between popular
items and personalized items from the perspective of the user.
The differences in scores between popular and personalized items
is eliminated by using a penalty based on their similarity. The
impact of popularity on scores is reduced by our similarity con-
straints. SPR makes recommendation results by considering user
preferences. Personalized items have a large chance to get ahead
of popularity items. Thus, the recommendation results are more
in line with the individual needs of users.

Our contributions to the literature are summarized as follows:

e We propose a personalized recommendation method called
similarity pairwise ranking, which considers the similarities
of items. SPR can overcome the influence of an imbalanced
data distribution, and the SPR-enhanced recommendation
will render meaningful and personalized results that better
meet the individual needs of users.

e In SPR, similar item pairs are used to constrain the differ-
ences in scores between pairs of items. The same ratings
of items illustrate the similarities between different items,
i.e., items that satisfy the users’ tastes are similar to a certain
degree. We utilize a sample method based on ratings to
obtain similar item pairs.

e We design a model to illustrate the improvement of SPR:
similarity pairwise ranking matrix factorization (SPRMF).
Experimental results obtained using six datasets indicate the
superiority in the recommendation quality of SPRMF over
recent state-of-the-art methods.

The remainder of this paper is organized as follows. Section 2
introduces the preliminaries of the proposed model. In Section 3,
we describe our proposed SPR method in detail. We also design
a model based on matrix factorization to illustrate the improve-
ments brought by SPR. Section 4 presents the experiments and
discusses the experimental results. In Section 5, we review some
previous related studies. Finally, we conclude the paper with
some remarks and future research directions.

2. Preliminaries

In this section, we first formulate the recommendation prob-
lem. Then, the pairwise loss function used in this paper is intro-
duced.

2.1. Recommendation problem

Given a recommendation problem, assume that a user set i/ =
{u',u?,...,u™} and an item set T = {i',i?,...,i"} contain m
users and n items, respectively. Let R € R™" denote the rating
matrix, where ry; is the rating of user u on item i, and we mark
unk if it is unknown. We list some commonly used notations
in Table 1. Most of the existing solutions for recommendations
involve constructing the interaction matrix P. Those solutions
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Table 1

Notations and explanations used in the paper.
Notation Explanation
m Number of users
n Number of items
u User set, t/ = {u', u?,...u™}
T Item set, 7 = {i', %, ...i"}
u A user in U
i,j,q An item in Z
D Training dataset
Tui Rating of user u on item i, r; € {1, ..., mr}
R Rating matrix, R € R™"
mr Max rating in R
Dui Interaction of user u on item i, p,; € {0, 1}
P Interaction matrix, P € R™"
unk Unknown
Tu User history behavior, u € u, 7, = {i|Vi € Z, ry; is not unk}.
7l User history behavior subset, u € U, Z, = {ilVi€ Z,r,; = 1}.
I\Zy Remaining item set, u € 4, Z\z, = {i|Vi € Z, r; is unk}.
k Latent dimension
X User matrix, X € R™
Xy Vector representation of user u, uth line in X
Y Item matrix, Y € R™
Y; Vector representation of item i, ith line in Y

construct the user-item interaction matrix P € R™" from R with
implicit feedback, as follows:

0
Pui:{ 1

Recommender systems are commonly formulated to estimate
the score of each unobserved entry in P, which are then used
for ranking the items. Given a user u history behavior 7, =
{ilVi € Z, r,; is not unk}, our goal is to provide u a personalized
ranking list of items from the remaining item set Z\Z, = {i|Vi €
T, 1y is unk}.

if 1y unk,
otherwise.

(1)

2.2. Pairwise loss function

In pairwise methods, the partial order is described by many
pairs of items. A pair of items i >, j indicates that user u prefers
item i to item j. For one user, given a positive sample item i and a
negative sample (or “unknown data”) item j, the predicted score
of item i should be higher than that of item j [8]. The objective
function is defined as follows:

Lpair = max Z (O ]i>y])
u,i,jeD
max Y Ino (pui — puj) — 2ol © I,

u,i,jeD

(2)

In Eq. (2), o is the sigmoid function o (x) = 1/(1 4+ exp (—x)),
Dui is the predicted score of user u on item i from a model, and
Lo is the hyperparameter of the regularization.

2.3. The effect of imbalanced data on BPR

The distribution of imbalanced data can seriously affect the
effectiveness of BPR [13]. BPR tends to rank popular items ahead
of personalized items. We denote p,; = pu — Dy By using
stochastic gradient descent (SGD), each pair of items i >, j is
updated:

R a'\ ”
46 =[1-0 (buy)] 2 —26. (3)
From Eq. (3), it can be seen that the gradient of the parameters

is related to p,;. In the learning process, each gradient of popular
items decreases as the difference between positive and negative
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sample scores increases. When encountering imbalanced data,
popular items obtain many small gradients. Hence, the score of
popular items increases to a very large value after several training
iterations, even if the gradient is constantly shrinking. If a user
obtains an item list from the BPR, popular items could have
a greater chance of ranking ahead of personalized items. This
outcome the effect of imbalanced data on BPR.

3. Similarity pairwise ranking

In this section, we propose a novel personalized recommen-
dation method called similarity pairwise ranking (SPR). SPR con-
siders item-item relations and emphasizes the similarity between
two positive samples from the perspective of users. This approach
matches the emphasis of BPR on the relationships between items
from the perspective of users. We first discuss the objective
function of SPR, which includes a new penalty. Then, a sam-
pling approach is introduced to show how to use ratings to
obtain a similar item pair. Third, we solve the objective function,
and present the generalized algorithm. Finally, we apply SPR
to matrix factorization, and we propose a novel model called
pairwise ranking matrix factorization (SPRMF) to optimize the
matrix factorization (MF) model for ranking.

3.1. Objective function

The similarity between items is one of the primary ways
to solve the recommendation problem, and it can be found in
many designs [6,23-25]. The top-ranked items and the items that
interact with a user have higher scores in content similarity. Item
similarity exists in a wide range of items, including both popular
items and personalized items. Therefore, we propose that the
item similarity can improve the performance of recommender
systems. We narrowed the score between similar item pairs in
such a way that the impact of imbalanced datasets is avoided.
Thus, the recommendation results are more in line with the
individual needs of users.

Following the key idea of BPR, we define the concept of item
similarity:

Similar item pair: Given a user u € U, where 7, = {i|Vi €
T, ryi is not unk} represents an item set that is a subset of T wherein
each item has interacted with u. Z\7, = {i|Vi € I,ry is unk}
represents an item set wherein each item has not interacted with
u and belongs to item set Z. A similar item pair (i, q|u, j) is defined
as u, and prefers items i and q to item j; i and q are similar for user
u. More specifically, i, q € 7, and j € T\T,

BPR enhances the differences in the scores between positive
samples and negative samples. Using similar item pairs, we pro-
pose a new penalty pyiq = Pyi — Puq to narrow the score difference
between two positive samples to ensure that two items have
similar values. Therefore, the model must carefully learn the item
information that meets the individual needs of users, not the
popularity of the items. Following Eq. (2), the objective function
of similarity pairwise ranking is defined as follows:

Lspr = min Z — (1 — Ol) Ino (ﬁl“])
u,i,j,qeD (4)

+ alno (Pug) + Aol © I,

where « is a hyperparameter, 1o is a regularization coefficient,
and o denotes the sigmoid function o (x) = 1/(1 + exp (—x)).
In the training process, the training frequency of a popular
item is much higher than that of a personalized item. This cir-
cumstance makes the scores of popular items increase as the
training time increases. The score gap between popular items and
personalized items makes it difficult to recommend personalized
items. SPR calculates the similarity between two items to reduce
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the differences in the scores between items. The relationship
between popular items and personalized items is implicitly de-
scribed by capturing the similarity between two items in SPR.
We narrowed the score between popular items and personalized
items by their similarity in such a way that the impact of im-
balanced datasets was avoided. An advantage of the SPR method
is that the SPR-based recommender system can learn more useful
features and generate more personalized recommendations when
the difference among item scores is small.

3.2. Sampling similar item pairs

In the previous subsection, we defined a key concept called
a similar item pair. A question that we must answer is how to
sample a similar item pair from a dataset. The same ratings of
items illustrate the similarities between different items, i.e., items
that satisfy users’ tastes are similar to a certain degree. We utilize
a sample method based on the ratings to obtain similar item pairs.

A large number of existing datasets contain user ratings on
items. However, in the recommendation task, the rating matrix
is often converted into an interactive matrix by Eq. (1), and
the recommendation method is used for learning and prediction.
Through careful consideration of users, we find that the ratings
represent the personalized taste of the user, and that similar
items have the same rating. Users think about the difference
between the current item and previous items when they give a
rating.

Formally, in the rating matrix R, the range of each rating r,; € R
is from 1 to mr. For each user, we first extract the set of items Z,
that the user has interacted with from the rating matrix. Second,
T, is split into mr subsets 7./, ..., Z,” according to rating value,
and thus, 7,! = {i|Vi € Z, r,; = 1}. Then, for each known rating
i € R for item i, we randomly select an item q from Z,™ and an
item j from Z\Z,. Finally, we obtain a similar item pair (i, q|u, j).

3.3. SPR learning algorithm

We follow the widely used stochastic gradient descent (SGD)
algorithm to optimize the objective function in Eq. (4). To simplify
the representation, we define

Z1=zyj=1-o0 (Iaui _.ﬁuj) , (5)

=zig=1-0 (ﬁui - ﬁuq) . (6)

The negative gradient of parameters in the objective function
is calculated as follows:

aIA7uij 8IA7Lzz'q

—QZy

RIC 00
With the above gradients, the model parameters are updated

as follows:

O=06+IrxAO

A0 =(1—a)z —20. (7)

360 >0

=@+lr*((1—o¢)zlapw] oz 9Puiq —A@)), ®
where Ir is the learning rate.

The pseudocode of the SPR learning algorithm is shown in
Algorithm 1. It consists of an initialization step and an iterative
training process. The initialization step involves randomly setting
the model parameters and dividing the user’s explicit feedback
data Z, across several subsets Z," according to the rating.
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Algorithm 1 Similarity Pairwise Ranking Learning Algorithm
Input: Explicit feedback dataset {(u, i, R;;)}, sampling ratio ng,
number of iterations t, learning rate Ir, regularization coefficient
A, hyperparameter «.

Output:The model parameters ©.

1: randomly initialize the parameters ©.

2: for each user, draw subset 7,, from dataset.
3: for each subset 7,, draw subset {Z,!,...

rating.

4: fort =1, ...,t do
5. for each (u, i, ry;) in dataset do
6: forn=1,...,ng do
7.
8
9

,T,} by using

sampling similar item pair (i, q|u, j)
update ® via Eqgs. (7) and (8).

: end for
10:  end for
11: end for

12: Return ®

3.4. Apply similarity pairwise ranking to matrix factorization

SPR is a model-independent top-level method. This method
can be combined with models to constrain their training pro-
cess. In this way, the SPR-enhanced recommendation will render
meaningful and personalized results that better meet the indi-
vidual needs of users, and it overcomes the negative impact of
imbalanced datasets. In this subsection, we apply SPR to matrix
factorization, and we propose a novel model called pairwise
ranking matrix factorization (SPRMF) to optimize the MF model
for ranking.

MF assumes that the interactive information matrix P can be
reconstructed from two small matrices X € P™* and Y € R™*, It
learns a latent space to represent users and items. Each line in X is
marked as X, which represents the embedding representation of
a user u in the low-dimensional space; at the same time, each line
in Y is marked as Y;, which represents the embedding of item i in
the low-dimensional space. MF assumes the following equation
to predict the preference of a user u toward item i:

K
P =, ilX,Y) =Xy YT =) Xue * Vi 9)
k=1

To apply the SPR method, we replace the objective function of
MF with the SPR objective function in Eq. (4). Specifically, Eq. (9)
is used to predict the score Py. By replacing the notation ® in
Eq. (4) with MF parameters, the objective function of the SPRMF
can be written as follows:

Lspryp = min Z — (1 —a)Ino (puy)
u,i,q.jeD (10)

+alno (Pug) + 4 (IXIZ + 1Y1?),

where « is a hyperparameter, o denotes the sigmoid function
o (x) = 1/1+ exp (—x), and ﬁuiq = Pui — f’uq-

Matrix factorization can learn the potential characteristics be-
tween users and items, and it predicts the interaction information
between users and items. After using SPR as the loss function,
during prediction, the partial order information between items
can be learned while overcoming the impact of data imbalance.
When using SPRMF for recommendation, the top-ranked items
must have good interactivity with the user, and they have al-
ready met the interest preferences shown in the user’s historical
behavior.

The goal of SPRMF is to find the best X and Y to fit the training
data and rank items by scores that are predicted from Eq. (9).
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Table 2

The statistics of datasets.
Dataset #user #item #rating Density (%)
ML-100K 943 1682 100000 4.19
ML-1M 6040 3952 1000209 6.30
ML-10M 69878 10677 10000054 1.34
ML-SL 610 9724 100836 1.70
R3 5050 1000 174497 3.46
R4 2867 10825 145034 0.47

According to Eq. (8), the negative gradient of each parameter
obtained by using SGD is as follows:

Ay =1 —a)z; (Vi = Y)) —az (Vi — Yq) — AXu, (11)
AY; = [(1— )z — az] X, — 1Y, (12)
AYj = —(1—a)z; x Xy — LY, (13)
AYy = azy % Xy — MY, (14)

where z; and z, are defined as in Eqgs. (5) and (6), respectively.
With the above gradients, the model parameters are updated
according to Algorithm 1.

We assume that the score p,; is greater than p,, when i is
a popular item and q is a personalized item. The parameters
are updated using Egs. (12) and (14). The popular item will
receive a differentiated score penalty item to prevent it from fur-
ther increasing. Personalized items will receive a supplementary
gradient to promote the increase in personalized item scores.

4. Experiments

In this section, we describe our experimental setting, and we
present the results of comparisons to different types of baseline
methods.

4.1. Datasets

We used six datasets for the experiment: four MovieLens
datasets,! i.e., MovieLens 100K (ML-100K) dataset, MovieLens 1M
(ML-1M) dataset, MovieLens 10M (ML-10M), MovielLens Least
Small (ML-LS); and two Yahoo! datasets,? ie. Yahoo!R3 (R3)
and Yahoo!R4 (R4). For Yahoo! datasets, we filtered out some
users with ratings below 20 to make them more consistent with
MovieLens datasets. The details of all of the datasets are shown
in Table 2.

The characteristics of the datasets are presented in Table 2.
Among them, ML-1M has the highest number of ratings and
the largest sparsity, which indicates that users have sufficient
activities to measure the performance of a model. ML-100K and
R3 are used to verify the performance of the model on the user
side and item side. According to the number of ratings each
item has, we divide the items into 5 groups. We then count the
number of items in each group, and we calculate the proportion
of each group’s total score in the dataset. The details of six
datasets are shown in Fig. 1. The first three datasets satisfy the
long-tailed distribution. The remaining three datasets have their
own characteristics. These six datasets provide a complete and
comprehensive analysis of our method.

1 http://grouplens.org/datasets/movielens/

2 http://webscope.sandbox.yahoo.com/catalog.php?datatype=r
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Fig. 1. Comparison of item historical ratings in six different datasets.

4.2. Evaluation methodology

We evaluate the performance of the learning algorithm by
separating the data into a training part used to train the model,
and a test part used to evaluate it. For each user, 50% of the ratings
are randomly selected for training, and the remaining 50% are
selected for testing. For each dataset, we repeat the above process
5 times independently, and obtain 5 splits of data. We adopt
one widely used ranking metric for the evaluation: normalized
discounted cumulative gain NDCG@K (5, 10).

NDCG is a ranking-based measure that assigns higher scores to
hits with top ranks. m, is a permutation of items for user u, and
m, is the permutation that generates the maximum of DCG@K.

K 2rumto — 1

DCGOK(u, ) =y o, 15
(U, ) glogz(k+1) (15)

1 DCG@K
NDCG@K = — Z (u, ) (16)

U] DCG@K (u, )

uel

4.3. Baselines for comparison

We compare SPRMF with some of the most advanced models.

Prod2Vec [4]: Product to vector is a neural language-based
algorithm that is specifically tailored for delivering effec-
tive product recommendations, which can show popular
products and products predicted based on co-occurrence.
BPMF [26]: Bayesian probabilistic matrix factorization is a
fully Bayesian treatment of the probabilistic matrix factor-
ization (PMF) model in which the model capacity is con-
trolled automatically by integrating all model parameters
and hyperparameters.

SVD++ [27]: Singular value decomposition plus plus is a
combined model that sums the predictions of latent factor
models and neighborhood models.

BPRMF [8]: Bayesian personalized ranking matrix factor-
ization is a method that was initially proposed to model
implicit feedback, and we introduced it in Section 2.2.

LCR [28]: Local collaborative ranking is a model that as-
sumes that the user preference matrix is locally low-rank,
where the locality is defined by a neighborhood with respect
to a given metric on pairs of (row, column) indices.

APPL [17]: Alternating pointwise-pairwise learning is a joint
method that combines implicit feedback and explicit feed-
back in the loss function.
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Fig. 2. Effect of parameters on SPR.

e CoFiSet [29]: Collaborative filtering by learning pairwise
preferences over item sets is a new and relaxed assumption
of pairwise preferences over item sets, which defines a
user’s preference on a set of items (item set) instead of on
a single item only.

e RBPR [18]: Rating Bayesian personalized ranking is a CF
ranking model that combines a rating-oriented approach of
probabilistic matrix factorization and a pairwise ranking-
oriented approach of Bayesian personalized ranking (BPR).

4.4. Parameter analysis

This subsection starts with a discussion of the effect of the
hyperparameter on the performance of SPRMF. Then we discuss
the impact of the sampling ratio and latent dimension.

4.4.1. Effect of the hyperparameter

The value of the hyperparameter « is important for the perfor-
mance on the recommendation task. Hence, we study the effect
of o by varying its value. The effect of @ on the performance
of the model is shown in Fig. 2. The number of iterations t is
set to 20, and the latent feature dimension is set to 10. We
use a Gaussian distribution A0, 0.1) to randomly generate all
of the parameters. We explored learning rates of {0.001, 0.002,
0.005, 0.007, 0.01 }, and regularization coefficients of {0.01, 0.02,
0.05, 0.07, 0.1}. Finally, we found that the model has the best
performance when the learning rate is fixed to Ir = 0.007 and
regularization parameter A = 0.05. During the experiment in
Fig. 2, @ ranges from 0.01 to 0.30, and the step size is set to 0.01.
The step size is set to 0.05 when « ranges from 0.30 to 1. We
truncated the data, and the results below a certain value were
discarded.

The performance of SPRMF converges (for NDCG@5 and
NDCG10) when « approaches 0.17 and 0.45 on ML-100K and R4,
respectively. Since the datasets have different data distributions,
the hyperparameters must be adjusted to account for the effect
of similarity constraints. The higher the average proportion of
popular items, the higher the optimal hyperparameter value.
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The experimental results show that hyperparameters can sig-
nificantly affect the performance of SPRMF. We also find that the
penalty proposed in this article based on similar item pairs is
effective. The significant change in performance on NDCG means
that the penalty can help the recommender system rank the items
that users are interested in first.

4.4.2. The impact of the sampling ratio

We conducted extensive experiments to show how the sam-
pling ratio influences the model performance. Fig. 3 shows the
NDCG obtained by SPRMF w.r.t the number of negative samples
per positive instance. As seen, sampling more than two negative
instances is helpful. Different data distributions place different
requirements on sampling ratios. On ML-100K and ML-LS, the
best NDCG@5 and NDCG@10 are obtained when the sampling
ratio is set to 2. On ML-10M and R4, the best NDCG@10 is
obtained when the sampling ratio is set to 4. On ML-1M and
R3, the performance rapidly increases when the sampling ratio
increases from 1 to 4. Then, as the sampling ratio increases from
4 to 10, the performance slowly increases. The impact of the
sampling ratio on the performance is related to the degree of data
imbalance. The higher the proportion of popular items, the higher
the sampling ratio needed to achieve the best performance.

Overall, the optimal sampling ratio is approximately 2 to 4.
Sampling more negative instances not only requires more time to
train the model, but it also sometimes degrades the performance.

4.4.3. The impact of the latent dimension

Fig. 4 shows the performance of SPR with different latent
dimensions d. On the whole, the impact of the embedding di-
mension on the model performance is not as great as that of
the sampling ratio. The best NDCG@5 and NDCG@10 are obtained
when the latent dimension is set to 40 on ML-100K. The curves on
ML-100K and R4 are similar because they both have a vertex, and
the performance starts to rise slowly after this vertex. The average
number of user interactions is greater than the average number
of item interactions. Thus, SPR can mine the relationship between
the personalized needs of the users when the user behaviors are
rich, and it can promote the recommender system to achieve
better performance. On other datasets, the performance basically
converges when setting the embedding dimension to 10.

Overall, the optimal latent dimension is between 10 and 40.
Moreover, a larger latent dimension d means higher complexity.

4.5. Sampler methods comparison

We verify the time performance and NDCG performance of the
sample method used in this article. There are two methods that
we have compared:

e random: This method uniformly samples items that the user
has interacted [16,18].

e APPLE+: We follow the APPLE method [14] and set the
weight of the item as p(q|i) = exp(ruq — 1ui)/(1 + exp(ruq —
rui))%. Here we sample similar item pairs while the APPL
method samples negative samples.

We used an Intel Xeon E5-2620 CPU clocked at 2.4 GHz with
64 GB of RAM. Table 3 shows the running time in seconds of
different sampling methods. We can see that the random method
is the fastest of those methods. Our method is a variant of the
uniform random sampling method and has the same complexity
as the uniform random sampling method. The additional time
overhead of our method comes from group items by ratings.
APPLE+ is more complicated than other methods. Table 4 shows
the NDCG performances. Our method is better than the other
methods. Especially in MI-100K, ML-10M, R3, and R4, our method
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Fig. 3. SPRMF Performance w.r.t different sample ratios of training data on six datasets.
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Table 3
Running time in seconds of different sampling methods.
Method MI-100K ML-1M ML-10M ML-LS R3 R34
random 4.00 47.96 12459.56 4.07 23.30 10.41
APPLE+ 19.06 316.15 15614.47 43.38 34.80 29.76
our 6.14 58.01 12856.97 6.56 42.95 18.18

outperforms APPLE+ by 2% on average. APPLE+ divides items into
several groups by r,; — 1. The probability of an item depends
on the rating. The higher the rating is, the greater the probability
that an item will appear. This approach makes all items similar
to high-rating items. However, the similarity between some low-
rating and high-rating items is inappropriate, which also causes
the method to perform poorly on some datasets. Overall, our
method achieves the best NDCG performance with a slightly
higher time overhead than the random sampling method.

4.6. Model performance comparison

For the baseline method, we cite the best results in existing
work or in open source frameworks [17,30]. For SPRMF, we
use Optuna and the discrete uniform search method to search
for the best result. The recommendation performance of SPRMF
and other baselines are shown in Table 5. Our model achieved

the best performance on all six datasets. In particular, SPRMF
outperforms BRPMF by 14.67%, 10.74%, 8.99%, 7.07%, 15.64%, and
3.35% on ML100K, ML-1M, ML-10M, ML-LS, R3, and R4, respec-
tively. SPRMF outperforms CoFiSet by 3.97%, 0.86%, 1.69%, 0.33%,
1.85%, and 2.11% on the datasets. Upon reviewing some statistical
information on these datasets, we found a phenomenon where a
small number of items have a large number of ratings, and their
proportion is extremely high. The more obvious this phenomenon
is, the better the performance of SPR. The obtained NDCG@10 is
similar to the obtained NDCG@5 on all six datasets.

Note that the improvements of SPRMF on ML-1M and ML-LS
are not obvious. By reviewing Fig. 1, we can determine that the
distributions of these two datasets are different from those of the
other four datasets. In ML-1M and ML-LS, the number of average
ratings for items is small, and they lack more information about
forming similar pairs of items, which is a major challenge for
our model. Because SPR associates two items through similarity,
a sparse item relationship makes two items associated with SPR
not necessarily appropriate. SPR penalizes similar items i and g,
which constitute a similar item pair. When the number of global
scores of i is insufficient, the sampling method cannot work well
on other datasets.

Overall, SPRMF is optimized for data distributions with long
tails, and it can achieve better results than existing models in
imbalanced data distributions. Moreover, SPR encourages per-
sonalized items to have the same predicted scores as popular
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Fig. 4. SPRMF Performance w.r.t different latent dimension of training data on six datasets.

Table 4
Comparison of NDCG obtained on different datasets of different sampling methods.
Method MI-100K ML-1M ML-10M ML-LS R3 R4
random 0.8001 0.8397 0.8078 0.8337 0.7407 0.8516
NDCG@5 APPLE+ 0.7858 0.8399 0.7974 0.8252 0.7457 0.8627
our 0.8192 0.8483 0.8185 0.8387 0.7533 0.8702
random 0.8250 0.8508 0.8327 0.8480 0.8185 0.8789
NDCG@10 APPLE 0.8186 0.8505 0.8218 0.8426 0.8221 0.8861
our 0.8327 0.8550 0.8332 0.8508 0.8280 0.8917

items, which allows better-personalized recommendations to be
provided when faced with data with long-tailed distributions.

4.7. Time complexity analysis

In terms of time complexity, both the original BPR and SPR
have O(N) complexity, where N is the sample pair obtained by
sampling. However, we can determine by comparing the objec-
tive functions that SPR has two terms while BPR has only one
term. Therefore, SPR has a more significant coefficient than BPR.
When compared with other methods, such as APPL and RBPR,
the coefficients are the same. To further verify the proposed
model’s time efficiency, we compare its running time with some
representative baselines. We record the running time across the
models in the same computing environment, and we set the

hyperparameters according to the original work. We used an Intel
Xeon E5-2620 CPU clocked at 2.4 GHz with 64 GB of RAM.

Table 6 shows the training and prediction time for each model.
The training time is the time for training one epoch of the data,
and the prediction time is the time required to complete the pre-
diction for the whole testing set. We can observe that the training
time of BPR is the largest. The reason is that BPR is implemented
in Python, and our core computing code is implemented in C++.
Languages that are biased toward the bottom are complicated to
implement, but they have good time efficiency. In the test stage,
the performance of the two is similar because both use the dot
product between the calculated vectors.

3 https://github.com/gamboviol/bpr
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Table 5
Comparison of NDCG obtained on different datasets.
ML-100K ML-1M ML-10M ML-LS R3 R4
Prod2Vec 0.6321 0.6521 0.6369 0.6599 0.6417 0.8181
BPMF 0.7272 0.7850 0.7021 0.7403 0.6512 0.8551
SVD++ 0.7214 0.7771 0.7184 0.7454 0.6612 0.8454
NDCG@5 LCR 0.7161 0.7783 0.6933 0.7340 0.6381 0.8510
BPRMF 0.7144 0.7660 0.7510 0.7833 0.6514 0.8420
APPL 0.7289 0.7882 0.7355 0.7971 0.6695 0.8607
CoFiSet 0.7879 0.8411 0.8049 0.8359 0.7396 0.8522
RBRP 0.7832 0.8389 0.8026 0.8274 0.7386 0.8493
SPRMF 0.8192 0.8483 0.8185 0.8387 0.7533 0.8702
Prod2Vec 0.6910 0.6907 0.6957 0.7140 0.6520 0.8727
BPMF 0.7596 0.7948 0.7705 0.7733 0.7466 0.8816
SVD++ 0.7553 0.7880 0.7597 0.7689 0.7550 0.8727
NDCG@10 LCR 0.7532 0.7895 0.7323 0.7783 0.7277 0.8753
BPRMF 0.7493 0.7797 0.7820 0.8065 0.7539 0.8718
APPL 0.7610 0.7970 0.7733 0.8211 0.7603 0.8838
CoFiSet 0.8157 0.8516 0.8216 0.8469 0.8173 0.8796
RBRP 0.8122 0.8490 0.8231 0.8412 0.8157 0.8774
SPRMF 0.8327 0.8550 0.8332 0.8508 0.8280 0.8917
Table 6
Time complexity analysis.
ML-100K ML-1M ML-10M ML-LS Yahoo!R3 Yahoo!R4
train test train test train test train test train test train test
BPR 10.19 8.09 151.1 73.57 1623.81 611.95 13.71 6.21 32.76 23.1 17.78 13.00
APPL 0.25 7.93 2.15 74.98 21.55 635.25 0.39 6.28 0.55 23.17 0.35 13.88
RBPR 1.86 8.96 3.80 144.23 23.30 2,795.12 3.12 9.46 3.08 47.34 3.49 19.04
SPR 0.20 7.66 1.95 73.22 20.40 613.72 0.38 5.71 0.50 23.19 0.35 14.00

5. Related work

In this section, recent pairwise methods are first discussed. To
overcome the impact of imbalanced data distributions, we then
illustrate some samplers. Finally, we summarize the difference
between SPR and existing methods.

5.1. Pairwise method

The pairwise method, which is a type of recommender
method, has a deep research history and is widely used in online
services. The pairwise method directly learns the partial order
of items, and it can produce more personalized recommendation
results than other methods. There are also two types of pairwise
methods: the pairwise method that uses implicit feedback, and
the pairwise method that adds rating information.

5.1.1. Pairwise method using implicit feedback

Implicit feedback information mainly contains user interaction
information, i.e., whether the user has interacted with an item.
Different from the classification problem, there are multiple pos-
sible reasons why users in a recommendation do not interact with
items. It could be that the user does not like the item or the user
does not see the item. In other words, “unknown data” cannot be
considered to be real negative samples [19]. The pairwise method
assumes that a user is more likely to prefer an interacting item
to a non-interacting item. Therefore, the pairwise method models
the recommendation problem as a ranking problem, and it hopes
to learn from the local ranking information and the global ranking
information.

As the first pairwise method, Bayesian personalized ranking
(BPR) is widely used in personalized recommender systems [11,
12]. It has been empirically shown that BPR is a remarkable
achievement with implicit feedback owing to its ranking-oriented
pairwise assumption. Some follow-up studies have extended BPR
[9-12]. The pairwise method itself has also undergone much
development. The GBPR model introduces group preferences to

relax the individual and independence assumptions [16]. GBPR
relaxes independent users into user groups through a collab-
orative filtering idea; in other words, a group of users prefer
item i to item j, which leads to cooperation among users. At the
same time, the UGPMF model uses the existing user demographic
information to construct similarity graphs at the user end, and it
then uses those graphs to standardize the pairwise matrix decom-
position process based on BPR [31]. We note here that the user
demographics include age, gender, and occupation. CoFiSet [29]
defines a user’s preference on a set of items (item-set) instead
of on a single item only. It is a new and relaxed assumption of
pairwise preferences over item sets. The relaxed assumption can
give more accurate pairwise preference relationships.

5.1.2. Pairwise method adding rating information

Explicit feedback mainly refers to user ratings on items they
purchased or viewed in the past. There is an overlapping sub-
space between explicit feedback and implicit feedback in most
models [17]. Thus, it is beneficial for the impacts of the different
feedbacks to be balanced.

The APPL model uses pointwise rating feedback and implicit
feedback alternately, and its performance is significantly better
than that of previous work [17]. The predicted scores can be fitted
into pairwise information and ratings at the same time. The RPR-
NMF model uses the relative pairwise relationship as a constraint
to make the learned low-dimensional representation [32]. The
relative pairwise relationship extends the partial order between
two items to between three items. CMR [33] satisfies three dif-
ferent constraints: (1) the rowwise order constraint, i.e., the order
of any pair of rating scores a user gives to two items should be
preserved; (2) the columnwise order constraint, i.e., the order
of any pair of rating scores an item received from two users
should be estimated correctly; and (3) the pointwise prediction
constraint, i.e., the prediction of a rating score should be close
to its real value. The PrefPMFSI model uses probabilistic matrix
factorization to generate an efficient ranking of items [34]. The
user- and item-side information are integrated into the model
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using the matrix cofactorization technique. Meanwhile, the RBPR
model combines a rating-oriented approach of probabilistic ma-
trix factorization (PMF) and a pairwise ranking-oriented approach
of Bayesian personalized ranking (BPR) [18]. Therefore, RBPR
makes full use of ratings and implicit feedback data.

5.2. Sampler for pairwise method

In many real-world learning systems, the data matrix can be
highly dimensional but sparse [35,36]. This circumstance poses an
imbalanced learning problem since the scale of missing entries is
usually much larger than that of the observed entries, and these
missing entries cannot be ignored due to the valuable negative
signal. However, it is widely known that the performance of BPR
depends largely on the quality of the negative samples.

To overcome this problem, a nonuniform item sampler is
proposed [20]. The proposed sampler is context-dependent (for
each user), and it oversamples informative pairs to speed up
convergence. The oversampling process that relies on the pre-
dicted score can help the model to correctly distinguish between
positive and negative samples. The APPLE model improved BPR
by defining an adaptive objective function and gradient [14].
Then, APPLE defined the utility of a randomly sampled triple to
strengthen the training results of the small deviation triples in
training. The WalkRanker model constructs a user-item bipartite
graph to represent the relationships between user-user, user—
item, and item-item [15]. It first uses the random walk method
to extract positive samples from short random walk sequences
dynamically. Then, a rank-aware negative sampling method is
used to extract negative samples. Finally, WalkRanker applies
the BPR optimization criterion to learn based on the MRR loss
function. A study [37] developed an efficient optimization method
that includes all of the missing entries as negative. Ding (2018)
proposed that the performance of BPR does not decrease but
increases after reducing the sampling space [21]. Thus, BPR+view
samples an item pair (i, j) from three candidate sets: purchased
items, viewed (but not purchased) items, and remaining items.
The best probabilities are [0.3, 0.3, 0.4].

5.3. Summary

SPR, which is proposed in this paper, is a new pairwise method
that narrows the score between similar item pairs in such a way
that the impact of imbalanced datasets is avoided.

The difference between recent pairwise methods (such as
GBPR and CoFiSet) and SPR is that SPR adds a constraint that
requires similar items to have similar scores. In contrast, GBPR
divides the positive samples into different groups g, and the score
of the group is equal to the average score of all of the positive
samples in the group 7y = >, ., fui- GBPR uses a fused prefer-
ence fgyi = Tgi + (1 — p)fy; instead of the original predicted score.
Finally, the objective function mainly optimizes the difference
between the mixture of positive samples and negative samples
Toui — Tug.

GBPR and SPR have different performances on the positive
samples. GBPR uses a variety of groups, while SPR penalizes the
difference between the two samples within the group. During
training, GBPR always applies a positive gradient to all of the
items in the group, while SPR applies a negative gradient to items
with higher scores. SPR can enhance the similarity of items in a
group and the differences between groups. Meanwhile, CoFiSet
is a method that uses logisticMF to predict the occurrence of
interaction. The difference between CoFiSet and SPR is similar to
that between GBPR and SPR.

At the same time, APPL [17] and RBPR [18] require that the
predicted score be as close to the real score as possible while
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maintaining the relative relationship. In other words, (r,; — Pui)*+
(ryj — i)uj)z — (ryi — 1yj)Duj. Moreover, negative samples have two
gradients from (ry; — pyj)? and —(ry; — ryj)puj. However, in SPR,
the scoring information is used to classify items and sample
similar items, and there could be a difference between the pre-
dicted score and the actual score. Furthermore, SPR relaxes the
relationship between negative samples.

6. Conclusions

In this paper, we focus on improving the effectiveness of BPR
when the real data distribution is imbalanced. First, we propose
a novel personalized recommendation method called similarity
pairwise ranking (SPR), which considers the similarity between
two positive samples in terms of user preferences. SPR eliminates
the differences in the scores between popular and personalized
items through the similarity between items, and overcomes the
impact of imbalanced datasets. Through SPR, other recommenda-
tion models can generate a more personalized recommendation
to meet the individual needs of users. We use SPRMF to prove the
effectiveness of the SPR method. The experimental results on six
real datasets show that the proposed SPR method can increase
NDCG. Moreover, SPR improves the performance of personalized
recommendations, and it demonstrates superior recommendation
quality over recent state-of-the-art methods.

In this paper, similarity comes from user ratings. However,
ratings are not always available. In the real environment, there
are more click events. Sampling good similar item pairs is a
significant problem. There is other information, such as text-rich
and mate-data, that can be used to obtain similarity. In the future,
we plan to further characterize and explore the relationship be-
tween popular items and personalized items. In addition, we will
apply SPR to other methods, including deep learning and graph
networks.
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